This help file describes the argument and value parameters used in the different functions available in package nFactors.
Arguments:
adequacy: logical: if TRUE prints the recovered
population matrix from the factor structure
(structureSim)
all: logical: if TRUE computes he Bentler and Yuan
index (very long computing time to consider)
(structureSim, studySim)
alpha: numeric: statistical significance level
(nBartlett, nBentler)
aparallel: numeric: results of a parallel analysis
(nScree)
cent: depreciated numeric (use quantile instead):
quantile of the distribution
(moreStats, parallel)
communalities: character: initial values for communalities
("component",
"ginv", "maxr", or "multiple")
(iterativePrincipalAxis, principalAxis)
cor: logical: if TRUE computes eigenvalues
from a correlation
matrix, else from a covariance matrix
(eigenComputes, nBartlett, nBentler,
nCng, nMreg, nScree, nSeScree)
correction: logical: if TRUE uses a correction
for the degree
of freedom after the first eigenvalue (nBartlett)
criteria: numeric: by default fixed at \(\hat{\lambda}\).
When the \(\lambda\)s are computed from a principal components
analysis on a correlation matrix, it corresponds to the
usual Kaiser \(\lambda >= 1\) rule. On a covariance matrix
or from a factor analysis, it is simply the mean.
To apply the \(\lambda >= 0\) sometimes used with factor
analysis, fixed the criteria to \(0\) (nScree)
details: logical: if TRUE also returns details about the
computation for each eigenvalues (nBartlett, nBentler,
nCng, nMreg, structureSim)
diagCommunalities: logical: if TRUE, the correlation between
the initial
solution and the estimated one will use a
correlation of one in the diagonal.
If FALSE (default) the diagonal is not
used in the computation of
this correlation or covariance matrix
(rRecovery)
dir: character: directory where to save output
(studySim)
eig: depreciated parameter (use x instead): eigenvalues to analyse
(nScree, plotParallel)
Eigenvalue: depreciated parameter (use x instead): eigenvalues to analyse
(plotuScree)
fload: matrix: loadings of the factor structure (structureSim)
graphic: logical: specific plot (bentlerParameters, structureSim)
index: numeric: vector of the index of the selected indices
(plot.structureSim, print.structureSim, summary.structureSim
iterations: numeric: maximum number of iterations to obtain a solution
(iterativePrincipalAxis)
legend: logical indicator of the presence of a legend (plotnScree, plotParallel)
loadings: numeric: loadings from a factor analysis solution (rRecovery, generateStructure, studySim)
log: logical: if TRUE does the minimization on the log values (bentlerParameters, nBentler)
main: character: main title (plotnScree, plotParallel, plotuScree, boxplot.structureSim,
plot.structureSim)
maxPar: numeric: maximums for the coefficient of the linear trend
(bentlerParameters, nBentler)
minPar: numeric: minimums for the coefficient of the linear trend
(bentlerParameters, nBentler)
method: character: actually only "giv" is supplied to compute the
approximation of the communalities by maximum correlation
(corFA, nCng, nMreg, nScree, nSeScree)
mjc: numeric: number of major factors (factors with practical significance)
(generateStructure)
pmjc: numeric: number of variables that load significantly on each major factor
(generateStructure)
model: character: "components" or "factors" (nScree, parallel, plotParallel,
plotuScree, structureSim, eigenBootParallel, eigenBootParallel, studySim)
N: numeric: number of subjects (nBartlett, bentlerParameters, nBentler, studySim)
nboot: numeric: number of bootstrap samples (eigenBootParallel)
nFactors: numeric: number of components/factors to retained (componentAxis,
iterativePrincipalAxis, principalAxis, bentlerParameters, boxplot.structureSim, studySim)
nScree: results of a previous nScree analysis (plotnScree)
option: character: "permutation" or "bootstrap" (eigenBootParallel)
object: nScree: an object of the class nScree is.nScree, summary.nScree
object: structureSim: an object of the class structureSim (is.structureSim,
summary.structureSim)
parallel: numeric: vector of the result of a previous parallel analysis (plotParallel)
pmjc: numeric: number of major loadings on each factor factors (generateStructure, studySim)
quantile: numeric: quantile that will be reported (parallel, moreStats,
eigenBootParallel, structureSim, studySim)
R: numeric: correlation or covariance matrix (componentAxis, iterativePrincipalAxis,
principalAxis, principalComponents, rRecovery, corFA)
r2limen: numeric: R2 limen value for the R2 Nelson index (structureSim, nSeScree, studySim)
rep: numeric: number of replications of the correlation or the covariance matrix (default is 100) (parallel)
reppar: numeric: number of replications for the parallel analysis (structureSim, studySim)
repsim: numeric: number of replications of the matrix correlation simulation (structureSim, studySim)
resParx: numeric: restriction on the \(\alpha\) coefficient (x) to graph the function to minimize
(bentlerParameters)
resolution: numeric: resolution of the 3D graph (number of points from \(\alpha\) and from \(\beta\)).
resPary: numeric: restriction on the \(\beta\) coefficient (y) to graph the function to minimize
(bentlerParameters)
sd: numeric: vector of standard deviations of the simulated variables
(for a parallel analysis on a covariance matrix) parallel)
show: logical: if TRUE prints the quantile chosen (moreStats)
stats: numeric: vector of the statistics to return: mean(1),
median(2), sd(3), quantile(4), min(5), max(6)
(studySim)
subject: numeric: number of subjects (default is 100) (parallel)
tolerance: numeric: minimal difference in the estimated communalities after a given iteration
(iterativePrincipalAxis)
trace: logical: if TRUE gives details of the status of the simulations
(studySim)
typePlot: character: plots the minimized function according to a 3D plot: "wireframe",
"contourplot" or "levelplot" (bentlerParameters)
unique: numeric: loadings on the non significant variables on each major factor
(generateStructure, studySim)
upper: logical: if TRUE upper diagonal is replaced with lower
diagonal. If FALSE, lower diagonal is replaced with upper diagonal
(diagReplace)
use: character: how to deal with missing values, same as the
parameter from the corr function (eigenBootParallel)
var: numeric: number of variables (default is 10) (parallel, generateStructure, studySim)
vLine: character: color of the vertical indicator line in the eigen boxplot
(boxplot.structureSim)
x: numeric: a vector of eigenvalues, a matrix of
correlations or of covariances or a data.frame of data
(eigenFrom, nBartlett, nCng, nMreg)
xlab: character: label of the x axis (plotnScree, plotParallel, plotuScree,
boxplot.structureSim)
x: data.frame: data from which a correlation or covariance matrix will be obtained (eigenBootParallel)
x: depreciated: (plotParallel)
x: nScree: an object of the class nScree (plot.nScree, print.nScree)
x: numeric: matrix (makeCor)
x: numeric: matrix or data.frame (moreStats)
x: structureSim: an object of the class structureSim (boxplot.structureSim,
plot.structureSim, print.structureSim)
ylab: character: label of the y axis (plotnScree, plotParallel, plotuScree,
boxplot.structureSim)
Values:
cor: numeric: Pearson correlation between initial and recovered estimated
correlation or covariance matrix. Compution depend on the
logical value of the communalities argument (rRecovery)
details: numeric: matrix of the details for each index (nBartlett, bentlerParameters, nCng, nMreg)
difference: numeric: difference between initial and recovered estimated
correlation or covariance matrix (rRecovery)
iterations: numeric: maximum number of iterations to obtain a solution (iterativePrincipalAxis)
loadings: numeric: loadings of each variable on each component or factor retained (componentAxis,
iterativePrincipalAxis, principalAxis, principalComponents)
nFactors: numeric: vector of the number of components or factors retained by the
Bartlett, Anderson and Lawley procedures (nBartlett, bentlerParameters, nCng, nMreg)
R: numeric: correlation or covariance matrix (diagReplace, rRecovery)
recoveredR: numeric: recovered estimated correlation or covariance matrix (rRecovery)
tolerance: numeric: minimal difference in the estimated communalities after a given iteration
(iterativePrincipalAxis)
values: numeric: data.frame of information (nScree, parallel, plotnScree, plotParallel,
plotuScree, structureSim)
values: numeric: data.frame of statistics (moreStats)
values: numeric: full matrix of correlation or covariance (makeCor)
values: numeric: variance of each component or factor (iterativePrincipalAxis, principalComponents)
values: data.frame: mean, median, quantile, standard deviation,
minimum and maximum of bootstrapped eigenvalues (eigenBootParallel)
values: numeric: matrix of correlation or covariance with communalities in the diagonal (corFA)
values: numeric: variance of each component or factor retained (componentAxis, principalAxis)
values: numeric: matrix factor structure (generateStructure)
varExplained: numeric: variance explained by each component or factor retained (componentAxis, iterativePrincipalAxis,
principalAxis, principalComponents)
varExplained: numeric: cumulative variance explained by each component or factor retained (componentAxis,
iterativePrincipalAxis, principalAxis, principalComponents)
Raiche, G., Riopel, M. and Blais, J.-G. (2006). Non graphical solutions for the Cattell's scree test. Paper presented at the International Annual meeting of the Psychometric Society, Montreal. [http://www.er.uqam.ca/nobel/r17165/RECHERCHE/COMMUNICATIONS/]
Other packages are also very useful for principal component and factor analysis. The R psychometric view is instructive at this point. See http://cran.stat.sfu.ca/web/views/Psychometrics.html for further details.