Bartholomew, D. J., Steele, F., Moustaki, I. and Galbraith, J.
I. (2002). The analysis and interpretation of multivariate data for
social scientists. Boca Raton, FL: Chapman and Hall.
Bentler, P. M. and Yuan, K.-H. (1998). Tests for linear trend in the
smallest eigenvalues of the correlation matrix. Psychometrika, 63(2),
131-144.
Buja, A. and Eyuboglu, N. (1992). Remarks on parallel analysis.
Multivariate Behavioral Research, 27(4), 509-540.
Cliff, N. (1970). The relation between sample and population characteristic
vectors. Psychometrika, 35(2), 163-178.
Hand, D. J., Daly, F., Lunn, A. D., McConway, K. J. and Ostrowski, E.
(1994). A handbook of small data sets. Boca Raton, FL: Chapman and
Hall.
Lawley, D. N. and Maxwell, A. E. (1971). Factor analysis as a
statistical method (2nd edition). London: Butterworth.
Raiche, G., Langevin, L., Riopel, M. and Mauffette, Y. (2006). Etude
exploratoire de la dimensionnalite et des facteurs expliques par une
traduction francaise de l'Inventaire des approches d'enseignement de
Trigwell et Prosser dans trois universite quebecoises. Mesure et
Evaluation en Education, 29(2), 41-61.
Raiche, G., Walls, T. A., Magis, D., Riopel, M. and Blais, J.-G. (2013).
Non-graphical solutions for Cattell's scree test. Methodology, 9(1), 23-29.
Tucker, L. D., Koopman, R. F. and Linn, R. L. (1969). Evaluation of factor
analytic research procedures by mean of simulated correlation matrices.
Psychometrika, 34(4), 421-459.
Zoski, K. and Jurs, S. (1993). Using multiple regression to determine the
number of factors to retain in factor analysis. Multiple Linear
Regression Viewpoint, 20(1), 5-9.