if (FALSE) {
if(interactive()){
## ................................................
# Example from Kim and Mueller (1978, p. 10)
# Population: upper diagonal
# Simulated sample: lower diagnonal
R <- matrix(c( 1.000, .6008, .4984, .1920, .1959, .3466,
.5600, 1.000, .4749, .2196, .1912, .2979,
.4800, .4200, 1.000, .2079, .2010, .2445,
.2240, .1960, .1680, 1.000, .4334, .3197,
.1920, .1680, .1440, .4200, 1.000, .4207,
.1600, .1400, .1200, .3500, .3000, 1.000),
nrow=6, byrow=TRUE)
# Factor analysis: Principal axis factoring with iterated communalities
# Kim and Mueller (1978, p. 23)
# Replace upper diagonal with lower diagonal
RU <- diagReplace(R, upper=TRUE)
nFactors <- 2
fComponent <- iterativePrincipalAxis(RU, nFactors=nFactors,
communalities="component")
fComponent
rRecovery(RU,fComponent$loadings, diagCommunalities=FALSE)
fMaxr <- iterativePrincipalAxis(RU, nFactors=nFactors,
communalities="maxr")
fMaxr
rRecovery(RU,fMaxr$loadings, diagCommunalities=FALSE)
fMultiple <- iterativePrincipalAxis(RU, nFactors=nFactors,
communalities="multiple")
fMultiple
rRecovery(RU,fMultiple$loadings, diagCommunalities=FALSE)
# .......................................................
}
}
Run the code above in your browser using DataLab