It can be useful when doing data analysis to add the number of missing data
points into your dataframe. add_n_miss
adds a column named "n_miss",
which contains the number of missing values in that row.
add_n_miss(data, ..., label = "n_miss")
a dataframe
a dataframe
Variable names to use instead of the whole dataset. By default this
looks at the whole dataset. Otherwise, this is one or more unquoted
expressions separated by commas. These also respect the dplyr verbs
starts_with
, contains
, ends_with
, etc. By default will add "_all" to
the label if left blank, otherwise will add "_vars" to distinguish that it
has not been used on all of the variables.
character default is "n_miss".
bind_shadow()
add_any_miss()
add_label_missings()
add_label_shadow()
add_miss_cluster()
add_prop_miss()
add_shadow_shift()
cast_shadow()
airquality %>% add_n_miss()
airquality %>% add_n_miss(Ozone, Solar.R)
airquality %>% add_n_miss(dplyr::contains("o"))
Run the code above in your browser using DataLab