nhclust

0th

Percentile

Cluster a set of neurons

Given an nblast all by all score matrix (which may be specified by a package default) and/or a vector of neuron identifiers use hclust to carry out a hierarchical clustering. The default value of the distfun argument will handle square distance matrices and R dist objects.

Usage
nhclust(neuron_names, method = "ward", scoremat = NULL, distfun = as.dist, ..., maxneurons = 4000)
Arguments
neuron_names
character vector of neuron identifiers.
method
clustering method (default Ward's).
scoremat
score matrix to use (see sub_score_mat for details of default).
distfun
function to convert distance matrix returned by sub_dist_mat into R dist object (default= as.dist).
...
additional parameters passed to hclust.
maxneurons
set this to a sensible value to avoid loading huge (order N^2) distances directly into memory.
Value

An object of class hclust which describes the tree produced by the clustering process.

See Also

hclust, dist

Other scoremats: sub_dist_mat

Aliases
  • nhclust
Examples
library(nat)
kcscores=nblast_allbyall(kcs20)
hckcs=nhclust(scoremat=kcscores)
# divide hclust object into 3 groups
library(dendroextras)
dkcs=colour_clusters(hckcs, k=3)
# change dendrogram labels to neuron type, extracting this information
# from type column in the metadata data.frame attached to kcs20 neuronlist
labels(dkcs)=with(kcs20[labels(dkcs)], type)
plot(dkcs)
# 3d plot of neurons in those clusters (with matching colours)
open3d()
plot3d(hckcs, k=3, db=kcs20)
# names of neurons in 3 groups
subset(hckcs, k=3)
Documentation reproduced from package nat.nblast, version 1.6.2, License: GPL-3

Community examples

Looks like there are no examples yet.