Default value for a list of control parameters that are used to estimate the parameters of negative binomial co-sparse factor regression (NBFAR) and negative binomial reduced rank regression (NBRRR).
nbfar_control(
maxit = 5000,
epsilon = 1e-07,
elnetAlpha = 0.95,
gamma0 = 1,
spU = 0.5,
spV = 0.5,
lamMaxFac = 1,
lamMinFac = 1e-06,
initmaxit = 10000,
initepsilon = 1e-08,
objI = 0
)maximum iteration for each sequential steps
tolerance value required for convergence of inner loop in GCURE
elastic net penalty parameter
power parameter for generating the adaptive weights
maximum proportion of nonzero elements in each column of U
maximum proportion of nonzero elements in each column of V
a multiplier of the computed maximum value (lambda_max) of the tuning parameter
a multiplier to determine lambda_min as a fraction of lambda_max
maximum iteration for minimizing the objective function while computing the initial estimates of the model parameter
tolerance value required for the convergence of the objective function while computing the initial estimates of the model parameter
1 or 0 to indicate that the convergence will be on the basis of objective function or not
a list of controlling parameter.
Mishra, A., M<U+00FC>ller, C. (2022) Negative binomial factor regression models with application to microbiome data analysis. https://doi.org/10.1101/2021.11.29.470304
# NOT RUN {
control <- nbfar_control()
# }
Run the code above in your browser using DataLab