Learn R Programming

nbpInference (version 1.0.3)

classic.neyman: Classic Neyman Sample Average Treatment Effect Estimator

Description

This function estimates the sample average treatment effect for a set of matched pairs using the classic Neyman estimator. For references on the classic Neyman estimator, see baiocchi2010building,zhang2022bridging,heng2023instrumental;textualnbpInference

Usage

classic.neyman(Y, Z, pairs)

Value

the sample average treatment effect (numeric)

Arguments

Y

a 2I-length vector of outcome values, which must be numeric.

Z

a 2I-length vector of treatment values, which must be numeric.

pairs

an I x 2 dataframe containing the indices of observations that form our set of matched pairs. An appropriate pairs dataframe can be formed using the nbp.caliper function.

See Also

Other inference: bias.corrected.neyman(), covAdj.variance(), make.pmatrix(), nbp.caliper()

Examples

Run this code
set.seed(12345)
X <- rnorm(100, 0, 5)
Z <- X + rnorm(100, 0, (1+sqrt(abs(X))))
Y <- X + Z + rnorm(100, 0, 0.5)
pmat <- make.pmatrix(Z, X)
pairs <- nbp.caliper(Z, X, pmat, xi = 0.1, M = 10000)
classic.neyman(Y, Z, pairs)

Run the code above in your browser using DataLab