spline.correlog.2D otherwise).Sncf2D(x, y, z, w = NULL, df = NULL, type = "boot", resamp = 1000,
npoints = 300, save = FALSE, max.it = 25, xmax = FALSE, na.rm = FALSE,
jitter = FALSE, quiet = FALSE, angle = c(0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5))oldncf2D used the alternative
of slizing up the data like pieces of a pie.
Latitude-longitude coordinates can NOT be used.
Missing values are allowed - values are assumed missing at random.
I have implemented an optional argument:
jitter if TRUE this jitters the distance matrix, to avoid some problems I've had
with spline-smoothing data from regular grid-data.summary.Sncf2D
plot.Sncf2D
cc.offset
Sncf
spline.correlog.2D#first generate some sample data
x <- expand.grid(1:20, 1:5)[,1]
y <- expand.grid(1:20, 1:5)[,2]
#z data from an exponential random field
z <- cbind(
rmvn.spa(x=x, y=y, p=2, method="exp"),
rmvn.spa(x=x, y=y, p=2, method="exp")
)
#anisotorpic nonparametric covariance function at 30 and 60 degrees
fit1 <- Sncf2D(x=x, y=y, z=z, resamp = 0, angle=c(30, 60))
plot.Sncf2D(fit1)
summary.Sncf2D(fit1)
#What distance is the peak in correlation
cc.offset(fit1)Run the code above in your browser using DataLab