## Linear regression
data(prostate)
X <- as.matrix(prostate[,1:8])
y <- prostate$lpsa
par(mfrow=c(2,2))
fit <- ncvreg(X,y)
plot(fit,main=expression(paste(gamma,"=",3)))
fit <- ncvreg(X,y,gamma=10)
plot(fit,main=expression(paste(gamma,"=",10)))
fit <- ncvreg(X,y,gamma=1.5)
plot(fit,main=expression(paste(gamma,"=",1.5)))
fit <- ncvreg(X,y,penalty="SCAD")
plot(fit,main=expression(paste("SCAD, ",gamma,"=",3)))
par(mfrow=c(2,2))
fit <- ncvreg(X,y)
plot(fit,main=expression(paste(alpha,"=",1)))
fit <- ncvreg(X,y,alpha=0.9)
plot(fit,main=expression(paste(alpha,"=",0.9)))
fit <- ncvreg(X,y,alpha=0.5)
plot(fit,main=expression(paste(alpha,"=",0.5)))
fit <- ncvreg(X,y,alpha=0.1)
plot(fit,main=expression(paste(alpha,"=",0.1)))
par(mfrow=c(2,2))
fit <- ncvreg(X,y)
plot(fir(fit)) ## Independence approximation
plot(fir(fit), type="EF") ## Independence approximation
perm.fit <- perm.ncvreg(X,y)
plot(perm.fit)
plot(perm.fit, type="EF")
## Logistic regression
data(heart)
X <- as.matrix(heart[,1:9])
y <- heart$chd
par(mfrow=c(2,2))
fit <- ncvreg(X,y,family="binomial")
plot(fit,main=expression(paste(gamma,"=",3)))
fit <- ncvreg(X,y,family="binomial",gamma=10)
plot(fit,main=expression(paste(gamma,"=",10)))
fit <- ncvreg(X,y,family="binomial",gamma=1.5)
plot(fit,main=expression(paste(gamma,"=",1.5)))
fit <- ncvreg(X,y,family="binomial",penalty="SCAD")
plot(fit,main=expression(paste("SCAD, ",gamma,"=",3)))
par(mfrow=c(2,2))
fit <- ncvreg(X,y,family="binomial")
plot(fit,main=expression(paste(alpha,"=",1)))
fit <- ncvreg(X,y,family="binomial",alpha=0.9)
plot(fit,main=expression(paste(alpha,"=",0.9)))
fit <- ncvreg(X,y,family="binomial",alpha=0.5)
plot(fit,main=expression(paste(alpha,"=",0.5)))
fit <- ncvreg(X,y,family="binomial",alpha=0.1)
plot(fit,main=expression(paste(alpha,"=",0.1)))
Run the code above in your browser using DataLab