Learn R Programming

nem (version 2.46.0)

nemModelSelection: Model selection for nested effect models

Description

Infers models with different regularization constants, compares them via the BIC or AIC criterion and returns the highest scoring one

Usage

nemModelSelection(lambdas,D,inference="nem.greedy",models=NULL,control=set.default.parameters(unique(colnames(D))),verbose=TRUE,...)

Arguments

lambdas
vector of regularization constants
D
data matrix with experiments in the columns (binary or continious)
inference
search to use exhaustive enumeration, triples for triple-based inference, pairwise for the pairwise heuristic, ModuleNetwork for the module based inference, nem.greedy for greedy hillclimbing, nem.greedyMAP for alternating MAP optimization using log odds or log p-value densities
models
a list of adjacency matrices for model search. If NULL, an exhaustive enumeration of all possible models is performed.
control
list of parameters: see set.default.parameters
verbose
do you want to see progression statements? Default: TRUE
...
other arguments to pass to function nem or network.AIC

Value

nem object

Details

nemModelSelection internally calls nem to infer a model with a given regularization constant. The comparison between models is based on the BIC or AIC criterion, depending on the parameters passed to network.AIC.

See Also

set.default.parameters, nem, network.AIC

Examples

Run this code
   data("BoutrosRNAi2002")
   D <- BoutrosRNAiDiscrete[,9:16]   
   hyper = set.default.parameters(unique(colnames(D)), para=c(0.13, 0.05), Pm=diag(4))
   res <- nemModelSelection(c(0.1,1,10), D, control=hyper)      
   
   plot.nem(res,main="highest scoring model")      

Run the code above in your browser using DataLab