# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05", "2025-02-01",
"2025-01-01", "2025-06-01")),
patient_dob = as.Date(c("2000-01-01", "2020-01-01", "2023-02-01",
"2023-01-01", "1970-06-01")),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5),
)
# arrest table
arrest_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
earrest_01 = rep("No", 5)
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_06 = c(100, 90, 80, 70, 85),
evitals_07 = c(80, 90, 50, 60, 87),
evitals_10 = c(110, 89, 88, 71, 85),
evitals_12 = c(50, 60, 70, 80, 75),
evitals_14 = c(30, 9, 8, 7, 31),
evitals_23 = c(6, 7, 8, 9, 10),
evitals_26 = c(3326007, 3326005, 3326003, 3326001, 3326007),
)
# disposition table
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_30 = c(4230013, 4230009, 4230013, 4230009, 4230013)
)
# test the success of the function
result <- ttr_01_population(patient_scene_table = patient_table,
response_table = response_table,
arrest_table = arrest_table,
vitals_table = vitals_table,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
incident_date_col = incident_date,
patient_DOB_col = patient_dob,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
earrest_01_col = earrest_01,
evitals_06_col = evitals_06,
evitals_07_col = evitals_07,
evitals_10_col = evitals_10,
evitals_12_col = evitals_12,
evitals_14_col = evitals_14,
evitals_23_col = evitals_23,
evitals_26_col = evitals_26,
transport_disposition_col = edisposition_30
)
# show the results of filtering at each step
result$filter_process
Run the code above in your browser using DataLab