# create tables to test correct functioning
# patient table
patient_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
incident_date = as.Date(c("2025-01-01", "2025-01-05",
"2025-02-01", "2025-01-01",
"2025-06-01")
),
patient_dob = as.Date(c("2000-01-01", "2020-01-01",
"2023-02-01", "2023-01-01",
"1970-06-01")
),
epatient_15 = c(25, 5, 2, 2, 55), # Ages
epatient_16 = c("Years", "Years", "Years", "Years", "Years")
)
# response table
response_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
eresponse_05 = rep(2205001, 5)
)
# situation table
situation_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
esituation_11 = c(rep("S02", 3), rep("S06", 2)),
esituation_12 = c(rep("S09.90", 2), rep("S06.0X9", 3)),
)
# vitals table
vitals_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
evitals_06 = c(85, 80, 100, 90, 82),
evitals_12 = c(95, 96, 97, 98, 99),
evitals_16 = c(35, 36, 37, 38, 39),
evitals_23 = rep(8, 5),
evitals_26 = c("Verbal", "Painful", "Unresponsive", "Verbal", "Painful")
)
# disposition table
disposition_table <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# test the success of the function
result <- tbi_01_population(patient_scene_table = patient_table,
response_table = response_table,
situation_table = situation_table,
vitals_table = vitals_table,
disposition_table = disposition_table,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_11_col = esituation_11,
esituation_12_col = esituation_12,
evitals_06_col = evitals_06,
evitals_12_col = evitals_12,
evitals_16_col = evitals_16,
evitals_23_col = evitals_23,
evitals_26_col = evitals_26,
transport_disposition_col = edisposition_30
)
# show the results of filtering at each step
result$filter_process
Run the code above in your browser using DataLab