# Synthetic test data
# for testing a single pain scale column
test_data2 <- tibble::tibble(
erecord_01 = c("R1", "R2", "R3", "R4", "R5"),
epatient_15 = c(34, 5, 45, 2, 60), # Ages
epatient_16 = c("Years", "Years", "Years", "Months", "Years"),
eresponse_05 = rep(2205001, 5),
esituation_02 = rep("Yes", 5),
evitals_01 = lubridate::as_datetime(c("2025-01-01 12:00:00", "2025-01-05
18:00:00", "2025-02-01 06:00:00", "2025-01-01 01:00:00", "2025-06-01
14:00:00")),
edisposition_28 = rep(4228001, 5),
edisposition_30 = c(4230001, 4230003, 4230001, 4230007, 4230007)
)
# Expand data so each erecord_01 has 2 rows (one for each pain score)
test_data_expanded2 <- test_data2 |>
tidyr::uncount(weights = 2) |> # Duplicate each row twice
# Assign pain scores
dplyr::mutate(evitals_27 = c(0, 0, 2, 1, 4, 3, 6, 5, 8, 7)) |>
dplyr::group_by(erecord_01) |>
dplyr::mutate(
# Lower score = later time
time_offset = dplyr::if_else(dplyr::row_number() == 1, -5, 0),
evitals_01 = evitals_01 + lubridate::dminutes(time_offset)
) |>
dplyr::ungroup() |>
dplyr::select(-time_offset) # Remove temporary column
# Run function with the single pain score column
# Return 95% confidence intervals using the Wilson method
trauma_03(
df = test_data_expanded2,
erecord_01_col = erecord_01,
epatient_15_col = epatient_15,
epatient_16_col = epatient_16,
eresponse_05_col = eresponse_05,
esituation_02_col = esituation_02,
evitals_01_col = evitals_01,
evitals_27_initial_col = NULL,
evitals_27_last_col = NULL,
evitals_27_col = evitals_27,
edisposition_28_col = edisposition_28,
transport_disposition_col = edisposition_30,
confidence_interval = TRUE
)
Run the code above in your browser using DataLab