To calculate density function, distribution function, quantile function, and build data from random generator function for the Fernandez-Osiewalski-Steel Skew Exponential Power Distribution.
dfossep(x, mu = 0, sigma = 1, alpha = 2, beta = 2, log = FALSE)pfossep(
q,
mu = 0,
sigma = 1,
alpha = 2,
beta = 2,
lower.tail = TRUE,
log.p = FALSE
)
qfossep(
p,
mu = 0,
sigma = 1,
alpha = 2,
beta = 2,
lower.tail = TRUE,
log.p = FALSE
)
rfossep(n, mu = 0, sigma = 1, alpha = 2, beta = 2)
dfossep
gives the density , pfossep
gives the distribution function,
qfossep
gives quantiles function, rfossep
generates random numbers.
vector of quantiles.
a location parameter.
a scale parameter.
a shape parameter (skewness).
a shape parameter (kurtosis).
logical; if TRUE, probabilities p are given as log(p) The default value of this parameter is FALSE
logical;if TRUE (default), probabilities are \(P\left[ X\leq x\right]\), otherwise, \(P\left[ X>x\right] \).
vectors of probabilities.
number of observations.
Almira Utami
Fernandez-Osiewalski-Steel Skew Exponential Power Distribution
The Fernandez-Osiewalski-Steel Skew Exponential Power distribution with parameters \(\mu\), \(\sigma\),\(\alpha\), and \(\beta\) has density: $$f(x |\mu,\sigma,\beta,\alpha) = \frac{c}{\sigma} \exp \left( - \frac{1}{2} \left| v z \right|^\tau \right) \quad \text{if } x < \mu$$ $$f(x |\mu,\sigma,\beta,\alpha) = \frac{c}{\sigma} \exp \left( - \frac{1}{2} \left| \frac{v}{z} \right|^\tau \right) \quad \text{if } x \ge \mu$$ $$ \text{where } -\infty < y < \infty, \ -\infty < \mu < \infty, \ \sigma > 0, \ \alpha > 0, \ \beta > 0$$ $$ z = \frac{x - \mu}{\sigma}$$ $$ c = v \tau \left[ (1 + v^2) 2^{\frac{1}{\tau}} \Gamma \left( \frac{1}{\tau} \right) \right]^{-1}$$
Fernandez, C., Osiewalski, J., & Steel, M. F. (1995) Modeling and inference with v-spherical distributions. Journal of the American Statistical Association, 90(432), pp 1331-1340.
Rigby, R.A. and Stasinopoulos, M.D. and Heller, G.Z. and De Bastiani, F. (2019) Distributions for Modeling Location, Scale, and Shape: Using GAMLSS in R.CRC Press
dfossep(4, mu=0, sigma=1, alpha=2, beta=2)
pfossep(4, mu=0, sigma=1, alpha=2, beta=2)
qfossep(0.4, mu=0, sigma=1, alpha=2, beta=2)
rfossep(4, mu=0, sigma=1, alpha=2, beta=2)
Run the code above in your browser using DataLab