# Comparison between different equations
creat <- c(0.8, 0.9, 1.0, 1.1, 1.2, 1.3)
cyst <- c(1.1, 0.95, 1.1, 1.0, 1.3, 1.2)
sex <- c(1, 1, 1, 0, 0, 0)
age <- c(60, 65, 43, 82, 71, 55)
ethn <- round(runif(6))
wt <- c(70, 80, 60, 55, 87, 71)
eGFR <- data.frame(creat, cyst)
eGFR$MDRD4 <- MDRD4(creat, sex, age, ethn, 'IDMS')
eGFR$CKDEpi.creat <- CKDEpi.creat(creat, sex, age, ethn)
eGFR$CKDEpi2021.creat <- CKDEpi2021.creat(creat, sex, age)
eGFR$CKDEpi.cys <- CKDEpi.cys(cyst, sex, age)
eGFR$CKDEpi.creat.cys <- CKDEpi.creat.cys(creat, cyst, sex, age, ethn)
eGFR$CKDEpi2021.creat.cys <- CKDEpi2021.creat.cys(creat, cyst, sex, age)
eGFR$Stevens.cys1 <- Stevens.cys1(cyst)
eGFR$Stevens.cys2 <- Stevens.cys2(cyst, sex, age, ethn)
eGFR$Stevens.creat.cys <- Stevens.creat.cys(creat, cyst, sex, age, ethn)
eGFR$cg <- CG(creat, sex, age, wt)
eGFR$virga <- Virga(creat, sex, age, wt)
pairs(eGFR[,3:13])
# For use with non-IDMS calibrated creatinine
# several authors (see references) suggested
# a 5% creatinine adjustment
creat <- c(0.8, 0.9, 1.0, 1.1, 1.2, 1.3)
sex <- c(1, 1, 1, 0, 0, 0)
age <- c(60, 65, 43, 82, 71, 55)
ethn <- round(runif(6))
gfr <- CKDEpi.creat(0.95*creat, sex, age, ethn)
Run the code above in your browser using DataLab