# define continuation dichotomies for level of education
cont.dichots <- continuationLogits(c("l.t.highschool",
"highschool",
"college",
"graduate"))
# Show dichotomies in various forms
print(cont.dichots)
as.matrix(cont.dichots)
as.character(cont.dichots)
# fit a nested model for the GSS data examining education degree in relation to parent & year
m <- nestedLogit(degree ~ parentdeg + year,
cont.dichots,
data=GSS)
coef(m) # coefficient estimates
sqrt(diag(vcov(m, as.matrix=TRUE))) # standard errors
print(m)
summary(m)
# broom methods
broom::glance(m)
broom::tidy(m)
# predicted probabilities and ploting
predict(m) # fitted probabilities for first few cases;
new <- expand.grid(parentdeg=c("l.t.highschool", "highschool",
"college", "graduate"),
year=c(1972, 2016))
fit <- predict(m, newdata=new)
cbind(new, fit) # fitted probabilities at specific values of predictors
# predicted logits for dichotomies
predictions <- predict(m, newdata=new, model="dichotomies")
predictions
Run the code above in your browser using DataLab