Learn R Programming

netClass (version 1.0)

stsvm.cv: Cross validation for smoothed t-statistic to select significant top ranked differential expressed genes

Description

Cross validation for smoothed t-statistic to select significant top ranked differential expressed genes

Usage

stsvm.cv(x=x, x.mi=NULL,y=y, folds=5,Gsub=matrix(1,100,100),repeats=3, parallel=FALSE,
	cores=2, DEBUG=TRUE, pt.pvalue = 0.05, op = 0.85, pt.step = 1000, a = 1, p=2,
	allF=TRUE, seed=1234, Cs = 10^c(-3:3) )

Arguments

x
A p x n matrix of expression measurements with p samples and n genes.
x.mi
A p x m matrix of expression measurements with p samples and m miRNAs.
y
A factor of length p comprising the class labels.
folds
Folds number of folds to perform
Gsub
An adjacency matrix that represents the underlying biological network.
repeats
Number of how often to repeat the x-fold cross-validation
parallel
Use parallel computing or not
cores
Number of cores will used when parallel is TRUE
DEBUG
Show debugging information in screen more or less.
pt.pvalue
Cut off p-value of permutation test
op
Pptimal on top op
pt.step
permutation test steps
a
constant value of random walk kernel
p
random walk step(s) of random walk kernel
allF
Using all features (TRUE) or only these genes mapped to prior information (FALSE).
seed
seed for random sampling.
Cs
Soft-margin tuning parameter of the SVM. Defaults to 10^c(-3:3).

Value

  • a LIST for Cross-Validation results
  • aucThe AUC values of each test fold
  • fitsThe tranined models for traning folds
  • featThe feature selected by each by the fits
  • labelsthe original lables for training

References

Yupeng Cun, Holger Frohlich (2013) Network and Data Integration for Biomarker Signature Disvovery via Network Smoothed T-Statistics

Examples

Run this code
library(netClass)
data(expr)
data(ad.matrix)
x <- expr$genes
y <- expr$y

r.stsvm <- stsvm.cv(x=x[,1:100],x.mi=NULL,y=y,folds=3,Gsub=ad.matrix,repeats=1, parallel=FALSE,
			 cores=2,DEBUG=TRUE,pt.pvalue=0.05,op=0.9,pt.step=3,a=1,p=2,allF=TRUE,
			 seed=1234,Cs=10^(-3:3))

Run the code above in your browser using DataLab