# Basic usage with Korean Family Planning data
data(kfamilyDiffNet)
result_basics <- degree_adoption_diagnostic(kfamilyDiffNet, bootstrap = FALSE)
print(result_basics)
# With bootstrap confidence intervals
result_boot <- degree_adoption_diagnostic(kfamilyDiffNet)
print(result_boot)
# Different degree aggregation strategies
result_first <- degree_adoption_diagnostic(kfamilyDiffNet, degree_strategy = "first")
result_last <- degree_adoption_diagnostic(kfamilyDiffNet, degree_strategy = "last")
# Multi-diffusion (toy) ----------------------------------------------------
set.seed(999)
n <- 40; t <- 5; q <- 2
garr <- rgraph_ws(n, t, p=.3)
diffnet_multi <- rdiffnet(seed.graph = garr, t = t, seed.p.adopt = rep(list(0.1), q))
# pooled (one combined analysis)
degree_adoption_diagnostic(diffnet_multi, combine = "pooled", bootstrap = FALSE)
# per-behavior (matrix of correlations; one column per behavior)
degree_adoption_diagnostic(diffnet_multi, combine = "none", bootstrap = FALSE)
Run the code above in your browser using DataLab