Learn R Programming

⚠️There's a newer version (1.4.2) of this package.Take me there.

Package for analysing heterogeneous network data

Consists of:

mixglasso - Mixture Graphical Lasso

ggm_gsa - Graphical Gaussian Model Gene Set Analysis

DiffNet and DiffRegr - Statistical Test for difference in network and regression models.

Plotting and exporting - Convenient display and analysis of results.

Easy installation from github:

library('devtools')

install_github('FrankD/NetHet')

Also available on Bioconductor-devel (with R-devel > 3.2 only):

source("http://bioconductor.org/biocLite.R")

biocLite("nethet")

Copy Link

Version

Version

1.4.0

License

GPL-2

Maintainer

Nicolas Staedler

Last Published

February 15th, 2017

Functions in nethet (1.4.0)

beta.mat.diffregr

Computation beta matrix
buildDotPlotDataFrame

Build up dataframe for plotting dot plot with ggplot2
beta.mat

Compute beta-matrix
aic.glasso

AIC.glasso
bic.glasso

BIC.glasso
agg.pval

P-value aggregation (Meinshausen et al 2009)
aggpval

Meinshausen p-value aggregation
bwprun_mixglasso

bwprun_mixglasso
agg.score.iriz.shift

Irizarry aggregate score (shift)
agg.score.iriz.scale

Irizarry aggregate score (scale)
dot_plot

Create a plot showing the edges with the highest partial correlation in any cluster.
diffregr_multisplit

Differential Regression (multi-split version).
diffnet_singlesplit

Differential Network for user specified data splits
cv.glasso

Crossvalidation for GLasso
diffregr_pval

Computation "split-asym" p-values.
error.bars

Error bars for plotCV
cv.fold

Make folds
diffregr_singlesplit

Differential Regression (single-split version).
diffnet_multisplit

Differential Network
func.uinit

Initialization of MixGLasso
export_network

Export networks as a CSV table.
est2.my.ev3

Compute weights of sum-of-weighted-chi2s
est2.my.ev2.diffregr

Compute weights of sum-w-chi2 (2nd order simplification)
est2.ww.mat2

Weights of sum-w-chi2
est2.my.ev3.diffregr

Compute weights of sum-of-weighted-chi2s
est2.my.ev2

Weights of sum-w-chi2
est2.ww.mat.diffregr

Estimate weights
est2.ww.mat2.diffregr

Estimate weights
diffnet_pval

P-value calculation
EXPStep.mix

Performs EStep
gsea.iriz

Irizarry approach for gene-set testing
gsea.highdimT2

GSA based on HighdimT2
het_cv_glasso

Cross-validated glasso on heterogeneous dataset with grouping
lambdagrid_mult

Lambda-grid
gsea.t2cov

GSA using T2cov-test
q.matrix.diffregr4

Computation Q matrix
loglik_mix

Log-likelihood for mixture model
ggmgsa_multisplit

Multi-split GGMGSA (parallelized computation)
getinvcov

Generate an inverse covariance matrix with a given sparsity and dimensionality
lambda.max

Lambdamax
make_grid

Make grid
lambdagrid_lin

Lambda-grid
MStepGlasso

MStep of MixGLasso
mcov

Compute covariance matrix
q.matrix3

Compute Q-matrix
screen_aic.glasso

AIC-tuned glasso with additional thresholding
my.ev2.diffregr

Computation eigenvalues
screen_bic.glasso

BIC-tuned glasso with additional thresholding
sim_mix

Simulate from mixture model.
sim_mix_networks

sim_mix_networks
symmkldist

Compute symmetric kull-back leibler distance
invcov2parcor_array

Convert inverse covariance to partial correlation for several inverse covariance matrices collected in an array.
generate_2networks

Generate sparse invcov with overlap
invcov2parcor

Convert inverse covariance to partial correlation
generate_inv_cov

generate_inv_cov
mixglasso_init

mixglasso_init
mixglasso_ncomp_fixed

mixglasso_ncomp_fixed
my.ttest2

T-test
t2cov.lr

Classical likelihood-ratio test
hugepath

Graphical Lasso path with huge package
inf.mat

Information Matrix of Gaussian Graphical Model
screen_cvsqrt.lasso

Cross-validated Lasso screening and sqrt-truncation.
perm.diffregr_teststat

Auxiliary function for computation of "split-perm" p-value.
screen_cvtrunc.lasso

Cross-validated Lasso screening and additional truncation.
plot_2networks

Plot two networks (GGMs)
plotCV

plotCV
print.nethetsummary

Print function for object of class 'nethetsummmary'
screen_full

Screen_full
screen_lasso

Screen_lasso
summary.diffregr

Summary function for object of class 'diffregr'
summary.ggmgsa

Summary function for object of class 'ggmgsa'
glasso.parcor

Graphical Lasso based on partial correlation penalty
glasso.invcov

Graphical Lasso based on inverse correlation penalty
gsea.iriz.shift

Irizarry approach (shift only)
mixglasso

mixglasso
gsea.iriz.scale

Irizarry approach (scale only)
mle.ggm

MLE in GGM
my.p.adjust

P-value adjustment
my.ttest

T-test
plot.ggmgsa

Plotting function for object of class 'ggmgmsa'
plot.nethetclustering

Plot networks
screen_cvfix.lasso

Cross-validated Lasso screening and upper bound on number of predictors.
screen_cvmin.lasso

Cross-validation lasso screening (lambda.min-rule)
test.t2

HotellingsT2
tr

Compute trace of matrix
twosample_single_regr

old single-split function for diffregr
w.kldist

Distance between comps based on symm. kl-distance
ggmgsa_singlesplit

Single-split GGMGSA
logratio

Log-likelihood-ratio statistics used in DiffNet
glasso.invcor

Graphical Lasso based on inverse covariance penalty
logratio.diffregr

Log-likelihood ratio statistics for Differential Regression.
NetHet-package

NetHet-package
plot.diffnet

Plotting function for object of class 'diffnet'
perm.diffregr_pval

Computation "split-perm" p-value.
plot.diffregr

Plotting function for object of class 'diffregr'
mytrunc.method

Additional thresholding
q.matrix.diffregr

Computation Q matrix
q.matrix.diffregr3

Computation Q matrix
screen_cv.glasso

Cross-validated glasso with additional thresholding
screen_cv1se.lasso

Cross-validated Lasso screening (lambda.1se-rule)
screen_mb

Node-wise Lasso-regressions for GGM estimation
sparse_conc

Generates sparse inverse covariance matrices
summary.diffnet

Summary function for object of class 'diffnet'
ww.mat2.diffregr

Computation M matrix and eigenvalues
ww.mat2

Calculates eigenvalues of weight-matrix (using 1st order simplification)
q.matrix4

q.matrix4
screen_shrink

Shrinkage approach for estimating Gaussian graphical model
scatter_plot

Create a scatterplot showing correlation between specific nodes in the network for each pre-specified group.
ww.mat.diffregr

Computation M matrix and eigenvalues
t2diagcov.lr

Diagonal-restricted likelihood-ratio test
test.sd

High-Dim Two-Sample Test (Srivastava, 2006)
ww.mat

Weight-matrix and eigenvalues
shapiro_screen

Filter "non-normal" genes
summary.nethetclustering

Summary function for object of class 'nethetclustering'
screen_mb2

Screen_mb2
sumoffdiag

Sum of non-diag elements of a matrix