Usage
screen_bic.glasso(x, include.mean = TRUE, length.lambda = 20,
lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001),
penalize.diagonal = FALSE, plot.it = FALSE,
trunc.method = "linear.growth", trunc.k = 5, use.package = "huge",
verbose = FALSE)
Arguments
x
The input data. Needs to be a num.samples by dim.samples matrix.
include.mean
Include mean in likelihood. TRUE / FALSE (default).
length.lambda
Length of lambda path to consider (default=20).
lambdamin.ratio
Ratio lambda.min/lambda.max.
penalize.diagonal
If TRUE apply penalization to diagonal of inverse
covariance as well. (default=FALSE)
plot.it
TRUE / FALSE (default)
trunc.method
None / linear.growth (default) / sqrt.growth
trunc.k
truncation constant, number of samples per predictor (default=5)
use.package
'glasso' or 'huge' (default).
verbose
If TRUE, output la.min, la.max and la.opt (default=FALSE).