Usage
screen_mb(x, include.mean = NULL, folds = 10, length.lambda = 20,
lambdamin.ratio = ifelse(ncol(x) > nrow(x), 0.01, 0.001),
penalize.diagonal = FALSE, trunc.method = "linear.growth", trunc.k = 5,
plot.it = FALSE, se = FALSE, verbose = FALSE)
Arguments
x
The input data. Needs to be a num.samples by dim.samples matrix.
include.mean
Include mean in likelihood. TRUE / FALSE (default).
folds
Number of folds in the cross-validation (default=10).
length.lambda
Length of lambda path to consider (default=20).
lambdamin.ratio
Ratio lambda.min/lambda.max.
penalize.diagonal
If TRUE apply penalization to diagonal of inverse
covariance as well. (default=FALSE)
trunc.method
None / linear.growth (default) / sqrt.growth
trunc.k
truncation constant, number of samples per predictor (default=5)
plot.it
TRUE / FALSE (default)
verbose
If TRUE, output la.min, la.max and la.opt (default=FALSE).