Learn R Programming

netjack (version 1.0.0)

group_diff_test: Group difference test

Description

This function implements the group difference test on a network statistic. This test assesses if the change in the network statistic due to the network manipulation is significantly different between groups.

Usage

group_diff_test(netSampleStatSet, grouping.variable, p.adjust = "BY",
  non.parametric = F)

Arguments

netSampleStatSet

Input NetSampleStatSet

grouping.variable

character name of sample level grouping variable

p.adjust

character string for requested multiple comparisons adjustment. Defaults to Benjamani-Hochberg

non.parametric

Logical. if true, test is performed using Wilcox test. If false, Welch's t-test. Defaults to false.

Value

A data frame containing original and adjusted p.values.

Details

If the sample has 2 groups, this test is performed using Welch's t-test or Wilcox test. If the sample has 3 or more groups, the test is performed using a 1-way ANOVA, or Kruskal-Wallis test. Differences are tested at each network manipulation.

Examples

Run this code
# NOT RUN {
data(GroupA)
GroupA_Net = as_NetSample(GroupA, 1:20, node.variables = list(community = c(rep(1, 10), rep(2,10))),
  sample.variables = list(group = c(rep(1, 10), rep(2,10))))
Jackknife_GroupA_Net = net_apply(GroupA_Net, node_jackknife)
GlobEff_GroupA_Net = net_stat_apply(Jackknife_GroupA_Net, global_efficiency)
group_diff_test(GlobEff_GroupA_Net, grouping.variable = "group")
# }

Run the code above in your browser using DataLab