Last chance! 50% off unlimited learning
Sale ends in
Subgroup analysis for objects of class netmeta
.
# S3 method for netmeta
subgroup(
x,
subgroup,
only.connected = FALSE,
common = x$common,
random = x$random,
method.tau = x$method.tau,
level.ma = x$level.ma,
backtransf = x$backtransf,
nchar.trts = x$nchar.trts,
...
)subgroup(x, ...)
# S3 method for subgroup.netmeta
print(
x,
common = x$x$common,
random = x$x$random,
backtransf = x$x$backtransf,
nchar.trts = x$x$nchar.trts,
digits = gs("digits"),
digits.se = gs("digits.se"),
digits.Q = gs("digits.Q"),
digits.pval.Q = gs("digits.pval.Q"),
digits.tau2 = gs("digits.tau2"),
digits.tau = gs("digits.tau"),
big.mark = gs("big.mark"),
scientific.pval = gs("scientific.pval"),
zero.pval = gs("zero.pval"),
JAMA.pval = gs("JAMA.pval"),
print.se = !backtransf,
print.tau2 = gs("print.tau2"),
print.tau = gs("print.tau"),
print.Q = gs("print.Q"),
text.tau2 = gs("text.tau2"),
text.tau = gs("text.tau"),
details.methods = gs("details"),
legend = gs("legend"),
...
)
An object of class "subgroup.netmeta"
with corresponding print
and forest
function.
An object of class netmeta
(or subgroup.netmeta
).
A vector defining the subgroups considered in the network meta-analysis.
A logical indicating whether networks of subgroups must be connected.
A logical indicating whether results for common effect subgroup network meta-analysis should be printed.
A logical indicating whether results for random effects subgroup network meta-analysis should be printed.
A character string indicating which method is
used to estimate the between-study variance "DL"
, "REML"
, or
"ML"
, can be abbreviated.
The level used to calculate confidence intervals for network estimates.
A logical indicating whether results should be
back transformed in printouts and forest plots. If
backtransf = TRUE
, results for sm = "OR"
are
presented as odds ratios rather than log odds ratios, for
example.
A numeric defining the minimum number of
characters used to create unique treatment names
(see netmeta
).
Additional arguments.
Minimal number of significant digits, see
print.default
.
Minimal number of significant digits for standard errors.
Minimal number of significant digits for
heterogeneity statistic Q, see print.default
.
Minimal number of significant digits for
p-value of heterogeneity test, see print.default
.
Minimal number of significant digits for
between-study variance print.default
.
Minimal number of significant digits for
A character used as thousands separator.
A logical specifying whether p-values should be printed in scientific notation, e.g., 1.2345e-01 instead of 0.12345.
A logical specifying whether p-values should be printed with a leading zero.
A logical specifying whether p-values for test of overall effect should be printed according to JAMA reporting standards.
A logical specifying whether standard errors should be printed.
A logical specifying whether between-study
variance
A logical specifying whether
A logical value indicating whether to print the results of the test of heterogeneity.
Text printed to identify between-study variance
Text printed to identify
A logical specifying whether details on statistical methods should be printed.
A logical indicating whether a legend should be printed.
forest.subgroup.netmeta
, forest.netmeta
# \donttest{
data("Senn2013")
# Add variable with (fictitious) risk of bias values
Senn2013$rob <- NA
set.seed(1909)
for (i in unique(Senn2013$studlab))
Senn2013$rob[Senn2013$studlab == i] <- sample(1:3, 1)
Senn2013$rob <- factor(Senn2013$rob, levels = 1:3,
labels = c("low", "moderate", "high"))
# Conduct network meta-analysis
net <- netmeta(TE, seTE, treat1.long, treat2.long, studlab,
data = Senn2013, sm = "MD", reference = "plac", nchar.trts = 4)
# Conduct subgroup network meta-analysis
subgroup(net, rob, common = FALSE)
# }
Run the code above in your browser using DataLab