
Last chance! 50% off unlimited learning
Sale ends in
This function generates a Hasse diagram for a partial order of treatment ranks in a network meta-analysis.
# S3 method for netposet
hasse(
x,
pooled = ifelse(x$random, "random", "common"),
newpage = TRUE,
shape = "roundrect",
col.lines = "black",
col.nodes = "black",
lwd = 1,
...
)hasse(x, ...)
An object of class netposet
(mandatory).
A character string indicating whether Hasse diagram
show be drawn for common ("common"
) or random effects model
("random"
). Can be abbreviated.
A logical value indicating whether a new figure should be printed in an existing graphics window. Otherwise, the Hasse diagram is added to the existing figure.
Shape of node borders, either "roundrect"
,
"rect"
, or "none"
, can be abbreviated.
Line colour.
Colour for treatment node borders.
Width of lines and node borders.
Additional arguments (ignored).
Gerta Rücker gerta.ruecker@uniklinik-freiburg.de, Guido Schwarzer guido.schwarzer@uniklinik-freiburg.de
Generate a Hasse diagram (Carlsen & Bruggemann, 2014) for a partial order of treatment ranks in a network meta-analysis (Rücker & Schwarzer, 2017).
This R function is a wrapper function for a modified version of R function
hasse
in R package hasseDiagram
(Krzysztof Ciomek, https://github.com/kciomek/hasseDiagram) which is
available under the MIT license.
Carlsen L, Bruggemann R (2014): Partial order methodology: a valuable tool in chemometrics. Journal of Chemometrics, 28, 226--34
Rücker G, Schwarzer G (2017): Resolve conflicting rankings of outcomes in network meta-analysis: Partial ordering of treatments. Research Synthesis Methods, 8, 526--36
netmeta
, netposet
,
netrank
, plot.netrank
,
dat.linde2015
if (FALSE) {
# Only run example if R package 'Rgraphviz' from Bioconductor is available
#
if (requireNamespace("Rgraphviz", quietly = TRUE)) {
# Define order of treatments in depression dataset dat.linde2015
#
trts <- c("TCA", "SSRI", "SNRI", "NRI",
"Low-dose SARI", "NaSSa", "rMAO-A", "Hypericum", "Placebo")
# Outcome labels
#
outcomes <- c("Early response", "Early remission")
# (1) Early response
#
pw1 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(resp1, resp2, resp3),
n = list(n1, n2, n3),
studlab = id, data = dat.linde2015, sm = "OR")
#
net1 <- netmeta(pw1, common = FALSE,
seq = trts, ref = "Placebo", small.values = "undesirable")
# (2) Early remission
#
pw2 <- pairwise(treat = list(treatment1, treatment2, treatment3),
event = list(remi1, remi2, remi3),
n = list(n1, n2, n3),
studlab = id, data = dat.linde2015, sm = "OR")
#
net2 <- netmeta(pw2, common = FALSE,
seq = trts, ref = "Placebo", small.values = "undesirable")
# Partial order of treatment rankings
#
po <- netposet(netrank(net1), netrank(net2), outcomes = outcomes)
# Hasse diagram
#
hasse(po)
}
}
Run the code above in your browser using DataLab