Learn R Programming

networkTomography (version 0.2)

R_estep: Compute conditional covariance matrix for EM algorithms of Cao et al. (2000)

Description

Computes conditional covariance of OD flows for E-step of EM algorithm from Cao et al. (2000) for their locally IID model.

Usage

R_estep(lambda, phi, A, c, epsilon)

Arguments

lambda
numeric vector (length k) of mean OD flows from last M-step
phi
numeric scalar scale for covariance matrix of xt
A
routing matrix (m x k) for network being analyzed
c
power parameter in model of Cao et al. (2000)
epsilon
numeric nugget to add to diagonal of covariance for numerical stability

Value

  • conditional covariance matrix (k x k) of OD flows given parameters

References

J. Cao, D. Davis, S. Van Der Viel, and B. Yu. Time-varying network tomography: router link data. Journal of the American Statistical Association, 95:1063-75, 2000.

See Also

Other CaoEtAl: grad_iid, grad_smoothed, locally_iid_EM, m_estep, phi_init, Q_iid, Q_smoothed, smoothed_EM