AND <- c(rep(0,7),1)
OR <- c(0,rep(1,7))
SUM <- c(0,1,1,2,1,2,2,3)
binary.data <- data.frame(expand.grid(c(0,1), c(0,1), c(0,1)), AND, OR, SUM)
print(net <- neuralnet( AND+OR~Var1+Var2+Var3, binary.data, hidden=0, rep=10,
err.fct="ce", linear.output=FALSE))
print(net.sum <- neuralnet( SUM~Var1+Var2+Var3, binary.data, hidden=0,
linear.output=TRUE))
net.sum$predictions
XOR <- c(0,1,1,0)
xor.data <- data.frame(expand.grid(c(0,1), c(0,1)), XOR)
print(net.xor <- neuralnet( XOR~Var1+Var2, xor.data, hidden=2, rep=5))
plot(net.xor, rep="best")
data(infert, package="datasets")
print(net.infert <- neuralnet( case~parity+induced+spontaneous, infert,
err.fct="ce", linear.output=FALSE, family=binomial()))
gwplot(net.infert, selected.covariate="parity")
gwplot(net.infert, selected.covariate="induced")
gwplot(net.infert, selected.covariate="spontaneous")
Var1 <- runif(50, 0, 100)
sqrt.data <- data.frame(Var1, Sqrt=sqrt(Var1))
print(net.sqrt <- neuralnet( Sqrt~Var1, sqrt.data, hidden=10, threshold=0.01))
compute(net.sqrt, (1:10)^2)$net.result
Run the code above in your browser using DataLab