# Create a sparse 4D brain image
mask <- LogicalNeuroVol(array(runif(64*64*32) > 0.7, c(64,64,32)), NeuroSpace(c(64,64,32)))
data <- matrix(rnorm(sum(mask) * 100), nrow=sum(mask), ncol=100)
sparse_vec <- SparseNeuroVec(data=data, mask=mask, space=NeuroSpace(dim=c(64,64,32,100)))
# Access a subset of the data
subset <- sparse_vec[,,, 1:10]
bspace <- NeuroSpace(c(10,10,10,100), c(1,1,1))
mask <- array(rnorm(10*10*10) > .5, c(10,10,10))
mat <- matrix(rnorm(sum(mask)), 100, sum(mask))
svec <- SparseNeuroVec(mat, bspace, mask)
length(indices(svec)) == sum(mask)
Run the code above in your browser using DataLab