dEPd gives the density, pEPd gives the distribution
function, qEPd gives the quantile function and rEPd generates
random deviates.
Arguments
x, q
vector of quantiles.
lambda, beta
are parameters.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are
\(P\left[ X\leq x\right]\), otherwise, \(P\left[ X>x\right] \).
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken
to be the number required.
Details
The EP distribution with parameters \(\lambda\) and \(\beta\),
has density
$$f\left( x\right) =\frac{\lambda \beta }
{\left( 1-e^{-\lambda }\right) } e^{-\lambda -\beta x+\lambda e^{-\beta x}},$$
where
$$x>\mathbb{R}_{+},~\beta ,\lambda \in \mathbb{R}_{+}.$$
References
Kuş, C., 2007,
A new lifetime distribution, Computational Statistics & Data Analysis,
51 (9), 4497-4509.