dgld gives the density, pgld gives the distribution
function, qgld gives the quantile function and rgld generates
random deviates.
Arguments
x, q
vector of quantiles.
a, alpha
are shape parameters.
beta
a scale parameter.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are
\(P\left[ X\leq x\right]\), otherwise, \(P\left[ X>x\right] \).
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken
to be the number required.
Details
The Gamma-Lomax distribution shape parameters
\(a\) and \(\alpha\), and scale parameter is \(\beta\),
has density
$$f\left( x\right) =\frac{\alpha \beta ^{\alpha }}
{\Gamma \left( a\right)\left( \beta +x\right) ^{\alpha +1}}\left\{ -\alpha
\log \left( \frac{\beta }{\beta +x}\right) \right\} ^{a-1},$$
where
$$x>0,~a,\alpha ,\beta >0.$$
References
Cordeiro, G. M., Ortega, E. M. ve Popović, B. V., 2015,
The gamma-Lomax distribution, Journal of statistical computation and
simulation, 85 (2), 305-319.
Ristić, M. M., & Balakrishnan, N. (2012), The gamma-exponentiatedexponential distribution. Journal of statistical computation and simulation
, 82(8), 1191-1206.