dkd gives the density, pkd gives the distribution
function, qkd gives the quantile function and rkd generates
random deviates.
Arguments
x, q
vector of quantiles.
alpha, lambda
are non-negative shape parameters.
log, log.p
logical; if TRUE, probabilities p are given as log(p).
lower.tail
logical; if TRUE (default), probabilities are
\(P\left[ X\leq x\right]\), otherwise, \(P\left[ X>x\right] \).
p
vector of probabilities.
n
number of observations. If length(n) > 1, the length is taken
to be the number required.
Details
Kumaraswamy distribution with non-negative shape
parameters \(\alpha\) and \(\lambda\) has density
$$f\left( x\right) =\alpha \lambda x^{\lambda -1}\left( 1-x^{\lambda }
\right)^{\alpha -1},$$
where
$$0<x<1,~~\alpha ,\lambda >0.$$
References
Kohansal, A. ve Bakouch, H. S., 2021,
Estimation procedures for Kumaraswamy distribution parameters under
adaptive type-II hybrid progressive censoring, Communications in
Statistics-Simulation and Computation, 50 (12), 4059-4078.