Learn R Programming

new.dist (version 0.1.1)

sod: Standard Omega Distribution

Description

Density, distribution function, quantile function and random generation for the Standard Omega distribution.

Usage

dsod(x, alpha, beta, log = FALSE)

psod(q, alpha, beta, lower.tail = TRUE, log.p = FALSE)

qsod(p, alpha, beta, lower.tail = TRUE)

rsod(n, alpha, beta)

Value

dsod gives the density, psod gives the distribution function, qsod gives the quantile function and rsod generates random deviates.

Arguments

x, q

vector of quantiles.

alpha, beta

are parameters.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are \(P\left[ X\leq x\right]\), otherwise, \(P\left[ X>x\right] \).

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

The Standard Omega distribution with parameters \(\alpha\) and \(\beta\), has density $$f\left( x\right) =\alpha \beta x^{\beta -1}\frac{1}{1-x^{2\beta }} \left( \frac{1+x^{\beta }}{1-x^{\beta }}\right) ^{-\alpha /2},$$ where $$0<x<1,~\alpha ,\beta >0.$$

References

Birbiçer, İ. ve Genç, A. İ., 2022, On parameter estimation of the standard omega distribution. Journal of Applied Statistics, 1-17.

Examples

Run this code
library(new.dist)
dsod(0.4, alpha=1, beta=2)
psod(0.4, alpha=1, beta=2)
qsod(.8, alpha=1, beta=2)
rsod(10, alpha=1, beta=2)

Run the code above in your browser using DataLab