Computes a principal components analysis based on the singular value decomposition.
# S4 method for CompositionMatrix
pca(
object,
center = TRUE,
scale = FALSE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
weight_row = NULL,
weight_col = NULL
)# S4 method for LogRatio
pca(
object,
center = TRUE,
scale = FALSE,
rank = NULL,
sup_row = NULL,
sup_col = NULL,
weight_row = NULL,
weight_col = NULL
)
A dimensio::PCA
object. See dimensio::pca()
for details.
A CompositionMatrix
or LogRatio
object.
A logical
scalar: should the variables be shifted to be
zero centered?
A logical
scalar: should the variables be scaled to unit
variance?
An integer
value specifying the maximal number of components
to be kept in the results. If NULL
(the default),
A vector
specifying the indices of the supplementary rows.
A vector
specifying the indices of the supplementary columns.
A numeric
vector specifying the active row (individual)
weights. If NULL
(the default), uniform weights are used. Row weights are
internally normalized to sum 1
A numeric
vector specifying the active column
(variable) weights. If NULL
(the default), uniform weights (1) are
used.
pca(CompositionMatrix)
: PCA of centered log-ratio, i.e. log-ratio analysis (LRA).
N. Frerebeau
Aitchison, J. and Greenacre, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics), 51: 375-392. tools:::Rd_expr_doi("10.1111/1467-9876.00275").
Filzmoser, P., Hron, K. and Reimann, C. (2009). Principal component analysis for compositional data with outliers. Environmetrics, 20: 621-632. tools:::Rd_expr_doi("10.1002/env.966").
dimensio::pca()
, dimensio::biplot()
, dimensio::screeplot()
,
dimensio::viz_individuals()
, dimensio::viz_variables()
## Data from Day et al. 2011
data("kommos", package = "folio") # Coerce to compositional data
kommos <- remove_NA(kommos, margin = 1) # Remove cases with missing values
coda <- as_composition(kommos, groups = 1) # Use ceramic types for grouping
## Log-Ratio Analysis
X <- pca(coda)
## Biplot
biplot(X)
## Explore results
viz_individuals(X, extra_quali = group_names(coda))
viz_variables(X)
Run the code above in your browser using DataLab