Learn R Programming

nftbart (version 2.1)

Nonparametric Failure Time Bayesian Additive Regression Trees

Description

Nonparametric Failure Time (NFT) Bayesian Additive Regression Trees (BART): Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees (HBART) and Low Information Omnibus (LIO) Dirichlet Process Mixtures (DPM). An NFT BART model is of the form Y = mu + f(x) + sd(x) E where functions f and sd have BART and HBART priors, respectively, while E is a nonparametric error distribution due to a DPM LIO prior hierarchy. See the following for a complete description of the model at .

Copy Link

Version

Install

install.packages('nftbart')

Monthly Downloads

176

Version

2.1

License

GPL (>= 2)

Maintainer

Rodney Sparapani

Last Published

November 28th, 2023

Functions in nftbart (2.1)

tsvs2

Variable selection with NFT BART models.
bMM

Create a matrix out of a vector or data.frame
xicuts

Specifying cut-points for the covariates
bartModelMatrix

Deprecated: use bMM instead
CDimpute

Cold-deck missing imputation
predict.aftree

Estimating the survival and the hazard for AFT BART models.
lung

NCCTG Lung Cancer Data
Cindex

Calculate the C-index/concordance for survival analysis.
nft2

Fit NFT BART models.
predict.nft2

Drawing Posterior Predictive Realizations for NFT BART models.
CDCheight

CDC height for age growth charts
bmx

NHANES 1999-2000 Body Measures and Demographics