Learn R Programming

nftbart (version 2.3)

Nonparametric Failure Time Bayesian Additive Regression Trees

Description

Nonparametric Failure Time (NFT) Bayesian Additive Regression Trees (BART): Time-to-event Machine Learning with Heteroskedastic Bayesian Additive Regression Trees (HBART) and Low Information Omnibus (LIO) Dirichlet Process Mixtures (DPM). An NFT BART model is of the form Y = mu + f(x) + sd(x) E where functions f and sd have BART and HBART priors, respectively, while E is a nonparametric error distribution due to a DPM LIO prior hierarchy. See the following for a description of the model at .

Copy Link

Version

Install

install.packages('nftbart')

Monthly Downloads

193

Version

2.3

License

GPL (>= 2)

Maintainer

Rodney Sparapani

Last Published

December 3rd, 2025

Functions in nftbart (2.3)

predict.aftree

Estimating the survival and the hazard for AFT BART models.
CDCheight

CDC height for age growth charts
bartModelMatrix

Deprecated: use bMM instead
CDimpute

Cold-deck missing imputation
predict.nft2

Drawing Posterior Predictive Realizations for NFT BART models.
bmx

NHANES 1999-2000 Body Measures and Demographics
lung

NCCTG Lung Cancer Data
nft2

Fit NFT BART models.
Cindex

Calculate the C-index/concordance for survival analysis.
bMM

Create a matrix out of a vector or data.frame
xicuts

Specifying cut-points for the covariates
tsvs2

Variable selection with NFT BART models.