# NOT RUN {
library(dplyr)
settings = lapply(expression_settings_validation[1:4], convert_expression_settings_evaluation)
weights_settings_loi = prepare_settings_leave_one_in_characterization(lr_network = lr_network, sig_network = sig_network, gr_network = gr_network, source_weights_df)
weights_settings_loi = lapply(weights_settings_loi,add_hyperparameters_parameter_settings, lr_sig_hub = 0.25,gr_hub = 0.5,ltf_cutoff = 0,algorithm = "PPR", damping_factor = 0.2, correct_topology = TRUE)
doMC::registerDoMC(cores = 4)
job_characterization_loi = parallel::mclapply(weights_settings_loi[1:4], evaluate_model,lr_network = lr_network, sig_network = sig_network, gr_network = gr_network, settings,calculate_popularity_bias_target_prediction = FALSE, calculate_popularity_bias_ligand_prediction = FALSE, ncitations, mc.cores = 4)
loi_performances = process_characterization_target_prediction_average(job_characterization_loi)
weights_settings_loo = prepare_settings_leave_one_out_characterization(lr_network = lr_network, sig_network = sig_network, gr_network = gr_network, source_weights_df)
weights_settings_loo = lapply(weights_settings_loo,add_hyperparameters_parameter_settings, lr_sig_hub = 0.25,gr_hub = 0.5,ltf_cutoff = 0,algorithm = "PPR", damping_factor = 0.2, correct_topology = TRUE)
doMC::registerDoMC(cores = 4)
job_characterization_loo = parallel::mclapply(weights_settings_loo[1:4], evaluate_model,lr_network = lr_network, sig_network = sig_network, gr_network = gr_network, settings,calculate_popularity_bias_target_prediction = FALSE, calculate_popularity_bias_ligand_prediction = FALSE,ncitations,mc.cores = 4)
loo_performances = process_characterization_target_prediction_average(job_characterization_loo)
sources_oi = c("kegg_cytokines")
output = estimate_source_weights_characterization(loi_performances,loo_performances,source_weights_df %>% filter(source != "kegg_cytokines"), sources_oi, random_forest =FALSE)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab