# NOT RUN {
library(dplyr)
weighted_networks = construct_weighted_networks(lr_network, sig_network, gr_network,source_weights_df)
ligands = list("TNF","BMP2",c("IL4","IL13"))
ligand_target_matrix = construct_ligand_target_matrix(weighted_networks, ligands, ltf_cutoff = 0.99, algorithm = "PPR", damping_factor = 0.5,ligands_as_cols = TRUE)
ligand_target_matrix_vis_genedirection = ligand_target_matrix %>% apply(1,scaling_modified_zscore) %>% .[,1:50]
ligand_target_matrix_vis_genedirection[ligand_target_matrix_vis_genedirection < 2] = 0
ligand_target_matrix_vis_genedirection[ligand_target_matrix_vis_genedirection != 0] = 1
ligand_target_matrix_vis_liganddirection = ligand_target_matrix %>% apply(2,scaling_modified_zscore) %>% .[1:50, ] %>% t()
ligand_target_matrix_vis_liganddirection[ligand_target_matrix_vis_liganddirection < 2] = 0
ligand_target_matrix_vis_liganddirection[ligand_target_matrix_vis_liganddirection != 0] = 2
bidirectional_ligand_target_matrix_vis = ligand_target_matrix_vis_genedirection + ligand_target_matrix_vis_liganddirection
bidirectional_ligand_target_matrix_vis[bidirectional_ligand_target_matrix_vis == 0] = "none"
bidirectional_ligand_target_matrix_vis[bidirectional_ligand_target_matrix_vis == 1] = "top-ligand"
bidirectional_ligand_target_matrix_vis[bidirectional_ligand_target_matrix_vis == 2] = "top-target"
bidirectional_ligand_target_matrix_vis[bidirectional_ligand_target_matrix_vis == 3] = "top"
p = make_heatmap_bidir_lt_ggplot(bidirectional_ligand_target_matrix_vis, y_name = "ligand", x_name = "target")
# }
Run the code above in your browser using DataLab