## Create a log-normal random variable, and transform it to the log scale
n = 100000
meanlog = -3
sdlog = 0.1
y = rlnorm(n=n, meanlog=meanlog, sdlog=sdlog)
x = log(y)
## Plot histograms of the two random variables
oldpar <- par()
par(mfrow=n2mfrow(2))
## Plot 1
hist(x, n=100, freq=FALSE)
curve(dLogLnorm(x, meanlog=meanlog, sdlog=sdlog), -4, -2, n=1001, col="red", add=TRUE, lwd=3)
## Plot 2: back-transformed
xNew = replicate(n=n, rLogLnorm(n=1, meanlog=meanlog, sdlog=sdlog))
yNew = exp(xNew)
hist(yNew, n=100, freq=FALSE, xlab="exp(x)")
curve(dlnorm(x, meanlog=meanlog, sdlog=sdlog), 0, 0.1, n=1001, col="red", lwd=3, add=TRUE)
par(oldpar)
## Create a NIMBLE model that uses this transformed distribution
code = nimbleCode({
log(y) ~ dLogLnorm(meanlog=meanlog, sdlog=sdlog)
})
# \donttest{
## Build & compile the model
const = list (meanlog=meanlog, sdlog=sdlog)
modelR = nimbleModel(code=code, const=const)
simulate(modelR)
modelC = compileNimble(modelR)
## Configure, build and compile an MCMC
conf = configureMCMC(modelC)
mcmc = buildMCMC(conf=conf)
cMcmc = compileNimble(mcmc)
## Run the MCMC
x = as.vector(runMCMC(mcmc=cMcmc, niter=50000))
y = exp(x)
## Plot MCMC output
oldpar <- par()
par(mfrow=n2mfrow(3))
## Plot 1: MCMC trajectory
plot(x, typ="l")
## Plot 2: taget density on unbounded sampling scale
hist(x, n=100, freq=FALSE)
curve(dLogLnorm(x, meanlog=meanlog, sdlog=sdlog), -4, -2, n=1001, col="red", lwd=3, add=TRUE)
## Plot 3: taget density on bounded scale
hist(y, n=100, freq=FALSE)
curve(dlnorm(x, meanlog=meanlog, sdlog=sdlog), 0, 0.1, n=1001, col="red", lwd=3, add=TRUE)
par(oldpar)
# }
Run the code above in your browser using DataLab