Learn R Programming

nlirms (version 3.4.4)

esc.EGA: Expected severity of claims based on the Exponential-Gamma model

Description

esc.EGA() function gives the expected severity of next claim for a policyholder with regards to the claims severity and freuency history of this policyholder in past time, based on the Exponential-Gamma model.

Usage

EGA(x, mu, sigma)
dEGA(x= 100, claim=1, mu = 50, sigma = 2)
esc.EGA(sumsev=100, claim =1, mu =50 , sigma = 2)

Arguments

x

vector of quantiles

mu

positive mean parameter of the Exponential-Gamma distribution that it wil be obtained from fitting Exponential-Gamma distribution to the claim severity data.

sigma

positive scale parameter of the Exponential-Gamma distribution that it will be obtained from fitting Exponential-Gamma distribution to the claim severity data.

sumsev

sum severity of all claims that a policyholder had in past years

claim

total number of claims that a policyholder had in past years

Value

esc.EGA() function return the expected severity of next claim based on the Exponential-Gamma model. dEGA() function return the probability density of Exponential-Gamma distribution.

Details

Consider that x be the size of the claim of each insured and z is the mean claim size for each insured, where conditional distribution of the size given the parameter z, is distributed according to exponential(z). if z following the Gamma distribution, z~GA(mu, sigma), with Parameterization that E(z)=mu, Then by apply the Bayes theorem the unconditional distribution of claim size x will be exponential-Gamma model, EGA~(mu, sigma), with probability density function as the following form:

f(x)=2*[(sigma*x/mu)^((sigma+1)/2)]*besselK((4*x*sigma/mu)^.5,sigma-1)/ gamma(sigma)

let claim=k1+ ...+kt, is the total number of claims and sumsev=x1+ ...+xclaim is the total amuont of claim size where xi is the amount of claim size in the claim i, (i=1, ..., i=claim). by apply the Bayes theorem, the posterior structure function of x given the claims size history of the policyholder i.e. f(x|x1, ..., xclaim), following the Generalized Inverse Guassian distribution, GIG(2*sigma/mu, 2*sumsev, sigma-claim). the expected claim severity based on the EGIG model is equal to the mean of this posteriori distribution.

References

Frangos, N. E., & Vrontos, S. D. (2001). Design of optimal bonus-malus systems with a frequency and a severity component on an individual basis in automobile insurance. ASTIN Bulletin: The Journal of the IAA, 31(1), 1-22.

Lemaire, J. (1995) Bonus-Malus Systems in Automobile Insurance, Kluwer Academic Publishers, Massachusetts.

MohammadPour, S., Saeedi, K., & Mahmoudvand, R. (2017). Bonus-Malus System Using Finite Mixture Models. Statistics, Optimization & Information Computing, 5(3), 179-187.

Najafabadi, A. T. P., & MohammadPour, S. (2017). A k-Inflated Negative Binomial Mixture Regression Model: Application to Rate--Making Systems. Asia-Pacific Journal of Risk and Insurance, 12.

Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(3), 507-554.

Stasinopoulos, D. M., Rigby, B. A., Akantziliotou, C., Heller, G., Ospina, R., & Motpan, N. (2010). gamlss. dist: Distributions to Be Used for GAMLSS Modelling. R package version, 4-0.

Stasinopoulos, D. M., & Rigby, R. A. (2007). Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23(7), 1-46.

Examples

Run this code
# NOT RUN {
esc.EGA(sumsev=100 ,claim=1 , mu=50, sigma=2)
claim=0:5
esc.EGA(sumsev=100 ,claim=claim , mu=50, sigma=2)
# }

Run the code above in your browser using DataLab