nlist
nlist is an R package to create and manipulate numeric list (nlist)
objects.
An nlist is an S3 class list of uniquely named numeric objects. An
numeric object is an integer or double vector, matrix or array. nlist
objects are the raw data inputs for analytic engines such as JAGS, STAN
and TMB.
An nlists object is a S3 class list of nlist objects with the same
names, dimensionalities and typeofs. nlists objects are useful for
storing multiple realizations of simulated data sets. They can be
converted to coda::mcmc and coda::mcmc.list objects.
Demonstration
numeric
An numeric object is an integer or double vector, matrix or array.
library(nlist)
is.numeric(1L)
#> [1] TRUE
is.numeric(matrix(1:3))
#> [1] TRUEnlist
An nlist is an S3 class list of uniquely named numeric objects.
It is straightforward to create an new nlist object.
library(nlist)
nlist <- nlist(x = 1, y = matrix(1:9, 3))
nlist
#> $x
#> [1] 1
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 1 4 7
#> [2,] 2 5 8
#> [3,] 3 6 9
#>
#> an nlist object with 2 numeric elementsnlists
An nlists object is a S3 class list of nlist objects with the same
names, dimensionalities and typeofs.
The nchains attribute is used to keep track of the number of chains.
nlists <- nlists(
nlist(x = 1, y = matrix(1:9, 3)),
nlist(x = -2, y = matrix(2:10, 3)),
nlist(x = 10, y = matrix(22:30, 3)),
nlist(x = -100, y = matrix(-2:-10, 3))
)
print(nlists)
#> $x
#> [1] -0.5
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 1.5 4.5 7.5
#> [2,] 2.5 5.5 8.5
#> [3,] 3.5 6.5 9.5
#>
#> an nlists object of 4 nlist objects each with 2 numeric elementsCoercion
nlist
A data.frame can be coerced to an nlist object
data <- data.frame(
lgl = c(TRUE, NA),
dte = as.Date(c("2001-01-02", "2001-01-01")),
fac = factor(c("b", "a"))
)
as_nlist(data)
#> $lgl
#> [1] 1 NA
#>
#> $dte
#> [1] 11324 11323
#>
#> $fac
#> [1] 2 1
#>
#> an nlist object with 3 numeric elementsAnd an nlist objects can be converted to an mcmc or term_frame
objects (and converted back again)
as_mcmc(nlist)
#> Markov Chain Monte Carlo (MCMC) output:
#> Start = 1
#> End = 1
#> Thinning interval = 1
#> x y[1,1] y[2,1] y[3,1] y[1,2] y[2,2] y[3,2] y[1,3] y[2,3] y[3,3]
#> [1,] 1 1 2 3 4 5 6 7 8 9
as_term_frame(nlist)
#> term value
#> 1 x 1
#> 2 y[1,1] 1
#> 3 y[2,1] 2
#> 4 y[3,1] 3
#> 5 y[1,2] 4
#> 6 y[2,2] 5
#> 7 y[3,2] 6
#> 8 y[1,3] 7
#> 9 y[2,3] 8
#> 10 y[3,3] 9nlists
The estimates() function can be used to aggregate an nlists object
to an nlist object.
estimates(nlists, fun = mean)
#> $x
#> [1] -22.75
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 5.75 7.25 8.75
#> [2,] 6.25 7.75 9.25
#> [3,] 6.75 8.25 9.75
#>
#> an nlist object with 2 numeric elementswhile the tidy() function treats the values as if they are MCMC
samples and summarises the terms as a tidy tibble.
tidy(nlists, simplify = TRUE)
#> # A tibble: 10 × 5
#> term estimate lower upper svalue
#> <term> <dbl> <dbl> <dbl> <dbl>
#> 1 x -0.5 -92.6 9.32 0
#> 2 y[1,1] 1.5 -1.77 20.5 0.737
#> 3 y[2,1] 2.5 -2.62 21.5 0.737
#> 4 y[3,1] 3.5 -3.47 22.5 0.737
#> 5 y[1,2] 4.5 -4.32 23.5 0.737
#> 6 y[2,2] 5.5 -5.17 24.5 0.737
#> 7 y[3,2] 6.5 -6.02 25.5 0.737
#> 8 y[1,3] 7.5 -6.87 26.5 0.737
#> 9 y[2,3] 8.5 -7.72 27.5 0.737
#> 10 y[3,3] 9.5 -8.57 28.5 0.737An nlists object can be converted to an mcmc.list object and a
term_frame.
as_mcmc_list(nlists)
#> [[1]]
#> Markov Chain Monte Carlo (MCMC) output:
#> Start = 1
#> End = 4
#> Thinning interval = 1
#> x y[1,1] y[2,1] y[3,1] y[1,2] y[2,2] y[3,2] y[1,3] y[2,3] y[3,3]
#> [1,] 1 1 2 3 4 5 6 7 8 9
#> [2,] -2 2 3 4 5 6 7 8 9 10
#> [3,] 10 22 23 24 25 26 27 28 29 30
#> [4,] -100 -2 -3 -4 -5 -6 -7 -8 -9 -10
#>
#> attr(,"class")
#> [1] "mcmc.list"
as_term_frame(nlists)
#> term sample value
#> 1 x 1 1
#> 2 y[1,1] 1 1
#> 3 y[2,1] 1 2
#> 4 y[3,1] 1 3
#> 5 y[1,2] 1 4
#> 6 y[2,2] 1 5
#> 7 y[3,2] 1 6
#> 8 y[1,3] 1 7
#> 9 y[2,3] 1 8
#> 10 y[3,3] 1 9
#> 11 x 2 -2
#> 12 y[1,1] 2 2
#> 13 y[2,1] 2 3
#> 14 y[3,1] 2 4
#> 15 y[1,2] 2 5
#> 16 y[2,2] 2 6
#> 17 y[3,2] 2 7
#> 18 y[1,3] 2 8
#> 19 y[2,3] 2 9
#> 20 y[3,3] 2 10
#> 21 x 3 10
#> 22 y[1,1] 3 22
#> 23 y[2,1] 3 23
#> 24 y[3,1] 3 24
#> 25 y[1,2] 3 25
#> 26 y[2,2] 3 26
#> 27 y[3,2] 3 27
#> 28 y[1,3] 3 28
#> 29 y[2,3] 3 29
#> 30 y[3,3] 3 30
#> 31 x 4 -100
#> 32 y[1,1] 4 -2
#> 33 y[2,1] 4 -3
#> 34 y[3,1] 4 -4
#> 35 y[1,2] 4 -5
#> 36 y[2,2] 4 -6
#> 37 y[3,2] 4 -7
#> 38 y[1,3] 4 -8
#> 39 y[2,3] 4 -9
#> 40 y[3,3] 4 -10An nlists object can have its chains split or collapsed.
split_chains(nlists)
#> $x
#> [1] -0.5
#>
#> $y
#> [,1] [,2] [,3]
#> [1,] 1.5 4.5 7.5
#> [2,] 2.5 5.5 8.5
#> [3,] 3.5 6.5 9.5
#>
#> an nlists object with 2 chains of 2 nlist objects each with 2 numeric elementsInstallation
Release
To install the release version from CRAN.
install.packages("nlist")The website for the release version is at https://poissonconsulting.github.io/nlist/.
Development
To install the development version from GitHub
# install.packages("remotes")
remotes::install_github("poissonconsulting/nlist")or from r-universe.
install.packages("nlist", repos = c("https://poissonconsulting.r-universe.dev", "https://cloud.r-project.org"))Contribution
Please report any issues.
Pull requests are always welcome.
Code of Conduct
Please note that the nlist project is released with a Contributor Code of Conduct. By contributing to this project, you agree to abide by its terms.