lme.groupedData

0th

Percentile

LME fit from groupedData Object

The response variable and primary covariate in formula(fixed) are used to construct the fixed effects model formula. This formula and the groupedData object are passed as the fixed and data arguments to lme.formula, together with any other additional arguments in the function call. See the documentation on lme.formula for a description of that function.

Keywords
models
Usage
lme(fixed, data, random, correlation, weights, subset, method,
    na.action, control)
Arguments
fixed
a data frame inheriting from class groupedData.
data
this argument is included for consistency with the generic function. It is ignored in this method function.
other arguments
identical to the arguments in the generic function call. See the documentation on lme.
Value

  • an object of class lme representing the linear mixed-effects model fit. Generic functions such as print, plot and summary have methods to show the results of the fit. See lmeObject for the components of the fit. The functions resid, coef, fitted, fixed.effects, and random.effects can be used to extract some of its components.

References

The computational methods are described in Bates, D.M. and Pinheiro (1998) and follow on the general framework of Lindstrom, M.J. and Bates, D.M. (1988). The model formulation is described in Laird, N.M. and Ware, J.H. (1982). The variance-covariance parametrizations are described in Pinheiro, J.C. and Bates., D.M. (1996). The different correlation structures available for the correlation argument are described in Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994), Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996), and Venables, W.N. and Ripley, B.D. (1997). The use of variance functions for linear and nonlinear mixed effects models is presented in detail in Davidian, M. and Giltinan, D.M. (1995).

Bates, D.M. and Pinheiro, J.C. (1998) "Computational methods for multilevel models" available in PostScript or PDF formats at http://franz.stat.wisc.edu/pub/NLME/ Box, G.E.P., Jenkins, G.M., and Reinsel G.C. (1994) "Time Series Analysis: Forecasting and Control", 3rd Edition, Holden-Day.

Davidian, M. and Giltinan, D.M. (1995) "Nonlinear Mixed Effects Models for Repeated Measurement Data", Chapman and Hall.

Laird, N.M. and Ware, J.H. (1982) "Random-Effects Models for Longitudinal Data", Biometrics, 38, 963-974.

Lindstrom, M.J. and Bates, D.M. (1988) "Newton-Raphson and EM Algorithms for Linear Mixed-Effects Models for Repeated-Measures Data", Journal of the American Statistical Association, 83, 1014-1022.

Littel, R.C., Milliken, G.A., Stroup, W.W., and Wolfinger, R.D. (1996) "SAS Systems for Mixed Models", SAS Institute.

Pinheiro, J.C. and Bates., D.M. (1996) "Unconstrained Parametrizations for Variance-Covariance Matrices", Statistics and Computing, 6, 289-296.

Venables, W.N. and Ripley, B.D. (1997) "Modern Applied Statistics with S-plus", 2nd Edition, Springer-Verlag.

See Also

lme, groupedData, lmeObject

Aliases
  • lme.groupedData
Examples
library(nlme) data(Orthodont) fm1 <- lme(Orthodont) summary(fm1)
Documentation reproduced from package nlme, version 3.1-1, License: GPL version 2 or later

Community examples

Looks like there are no examples yet.