When only one fitted model object is present, a data frame with the
numerator degrees of freedom, denominator degrees of
freedom, F-values, and P-values for Wald tests for the terms in the
model (when Terms
and L
are NULL
), a combination
of model terms (when Terms
in not NULL
), or linear
combinations of the model coefficients (when L
is not
NULL
). Otherwise, when multiple fitted objects are being
compared, a data frame with the degrees of freedom, the (restricted)
log-likelihood, the Akaike Information Criterion (AIC), and the
Bayesian Information Criterion (BIC) of each object is returned. If
test=TRUE
, whenever two consecutive objects have different
number of degrees of freedom, a likelihood ratio statistic with the
associated p-value is included in the returned data frame.
# S3 method for lme
anova(object, ..., test, type, adjustSigma, Terms, L, verbose)
# S3 method for anova.lme
print(x, verbose, ...)
a data frame inheriting from class "anova.lme"
.
an object inheriting from class "lme"
,
representing a fitted linear mixed-effects model.
other optional fitted model objects inheriting from
classes "gls"
, "gnls"
, "lm"
, "lme"
,
"lmList"
, "nlme"
, "nlsList"
, or "nls"
.
an optional logical value controlling whether likelihood
ratio tests should be used to compare the fitted models represented
by object
and the objects in ...
. Defaults to
TRUE
.
an optional character string specifying the type of sum of
squares to be used in F-tests for the terms in the model. If
"sequential"
, the sequential sum of squares obtained by
including the terms in the order they appear in the model is used;
else, if "marginal"
, the marginal sum of squares
obtained by deleting a term from the model at a time is used. This
argument is only used when a single fitted object is passed to the
function. Partial matching of arguments is used, so only the first
character needs to be provided. Defaults to "sequential"
.
an optional logical value. If TRUE
and the
estimation method used to obtain object
was maximum
likelihood, the residual standard error is multiplied by
TRUE
.
an optional integer or character vector specifying which
terms in the model should be jointly tested to be zero using a Wald
F-test. If given as a character vector, its elements must correspond
to term names; else, if given as an integer vector, its elements must
correspond to the order in which terms are included in the
model. This argument is only used when a single fitted object is
passed to the function. Default is NULL
.
an optional numeric vector or array specifying linear
combinations of the coefficients in the model that should be tested
to be zero. If given as an array, its rows define the linear
combinations to be tested. If names are assigned to the vector
elements (array columns), they must correspond to coefficients
names and will be used to map the linear combination(s) to the
coefficients; else, if no names are available, the vector elements
(array columns) are assumed in the same order as the coefficients
appear in the model. This argument is only used when a single fitted
object is passed to the function. Default is NULL
.
an object inheriting from class "anova.lme"
an optional logical value. If TRUE
, the calling
sequences for each fitted model object are printed with the rest of
the output, being omitted if verbose = FALSE
. Defaults to
FALSE
.
José Pinheiro and Douglas Bates bates@stat.wisc.edu
Pinheiro, J.C., and Bates, D.M. (2000) "Mixed-Effects Models in S and S-PLUS", Springer.
fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject)
anova(fm1)
fm2 <- update(fm1, random = pdDiag(~age))
anova(fm1, fm2)
## Pinheiro and Bates, pp. 251-254 ------------------------------------------
fm1Orth.gls <- gls(distance ~ Sex * I(age - 11), Orthodont,
correlation = corSymm(form = ~ 1 | Subject),
weights = varIdent(form = ~ 1 | age))
fm2Orth.gls <- update(fm1Orth.gls,
corr = corCompSymm(form = ~ 1 | Subject))
## anova.gls examples:
anova(fm1Orth.gls, fm2Orth.gls)
fm3Orth.gls <- update(fm2Orth.gls, weights = NULL)
anova(fm2Orth.gls, fm3Orth.gls)
fm4Orth.gls <- update(fm3Orth.gls, weights = varIdent(form = ~ 1 | Sex))
anova(fm3Orth.gls, fm4Orth.gls)
# not in book but needed for the following command
fm3Orth.lme <- lme(distance ~ Sex*I(age-11), data = Orthodont,
random = ~ I(age-11) | Subject,
weights = varIdent(form = ~ 1 | Sex))
# Compare an "lme" object with a "gls" object (test would be non-sensical!)
anova(fm3Orth.lme, fm4Orth.gls, test = FALSE)
## Pinheiro and Bates, pp. 222-225 ------------------------------------------
op <- options(contrasts = c("contr.treatment", "contr.poly"))
fm1BW.lme <- lme(weight ~ Time * Diet, BodyWeight, random = ~ Time)
fm2BW.lme <- update(fm1BW.lme, weights = varPower())
# Test a specific contrast
anova(fm2BW.lme, L = c("Time:Diet2" = 1, "Time:Diet3" = -1))
## Pinheiro and Bates, pp. 352-365 ------------------------------------------
fm1Theo.lis <- nlsList(
conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data=Theoph)
fm1Theo.lis
fm1Theo.nlme <- nlme(fm1Theo.lis)
fm2Theo.nlme <- update(fm1Theo.nlme, random= pdDiag(lKe+lKa+lCl~1) )
fm3Theo.nlme <- update(fm2Theo.nlme, random= pdDiag( lKa+lCl~1) )
# Comparing the 3 nlme models
anova(fm1Theo.nlme, fm3Theo.nlme, fm2Theo.nlme)
options(op) # (set back to previous state)
Run the code above in your browser using DataLab