
Last chance! 50% off unlimited learning
Sale ends in
Bootstrap data by sampling the same number of subjects from the original dataset by sampling with replacement.
bootdata(dat)
model data to be bootstrapped
Bootstrapped data
# NOT RUN {
specs <- list(fixed = lKA + lCL + lV ~ 1,
random = pdDiag(lKA + lCL ~ 1),
start = c(lKA = 0.5, lCL = -3.2, lV = -1))
set.seed(99)
nboot <- 5
cat("generating", nboot, "bootstrap samples...\n")
cmat <- matrix(NA, nboot, 3)
for (i in 1:nboot)
{
# print(i)
bd <- bootdata(theo_md)
fit <- nlme_lin_cmpt(bd, par_model = specs, ncmt = 1)
cmat[i, ] <- fit$coefficients$fixed
}
dimnames(cmat)[[2]] <- names(fit$coefficients$fixed)
print(head(cmat))
# }
Run the code above in your browser using DataLab