Hamil.method: It is passed onto the function tsp of library TSP. To use linkern method, the user needs to install concord as instructed in TSP.
use.normal.approx: If TRUE, normal approximation is used for every feature, AND all covariances are assumed to be zero. If FALSE, generates permutation based null distribution - mean vector and a variance-covariance matrix.
normalization: There are three choices - "standardize" means removing the mean of each row and make the standard deviation one; "normal_score" means normal score transformation; "none" means do nothing. In that case we still assume some normalization has been done by the user such that each row has approximately mean 0 and sd 1.
combine.linear: The two pieces of information is combined at the start to initiate the distance matrix.