mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
xstarts <- mean(baseT)
# \donttest{
# Plot single group LGCM model
set.seed(20191029)
BLS_LGCM1 <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS",
intrinsic = FALSE, records = 1:9, res_scale = 0.1)
Figure1 <- getFigure(
model = BLS_LGCM1@mxOutput, nClass = NULL, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
show(Figure1)
# Plot mixture LGCM model
BLS_LGCM2 <- getMIX(
dat = RMS_dat0, prop_starts = c(0.45, 0.55), sub_Model = "LGCM",
cluster_TIC = NULL, y_var = "M", t_var = "T", records = 1:9,
curveFun = "BLS", intrinsic = FALSE, res_scale = list(0.3, 0.3)
)
Figure2 <- getFigure(
model = BLS_LGCM2@mxOutput, nClass = 2, cluster_TIC = NULL, sub_Model = "LGCM",
y_var = "M", curveFun = "BLS", y_model = "LGCM", t_var = "T", records = 1:9,
m_var = NULL, x_var = NULL, x_type = NULL, xstarts = xstarts, xlab = "Month",
outcome = "Mathematics"
)
show(Figure2)
# }
Run the code above in your browser using DataLab