mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# Standardized time-invariant covariates
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# \donttest{
# Fit bilinear spline latent growth curve model (fixed knots)
BLS_LGCM_r <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = FALSE, records = 1:9, growth_TIC = NULL, res_scale = 0.1
)
# Fit bilinear spline latent growth curve model (random knots) with
# time-invariant covariates for mathematics development
## Define parameter names
paraBLS.TIC_LGCM.f <- c(
"alpha0", "alpha1", "alpha2", "alphag",
paste0("psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")),
"residuals", paste0("beta1", c(0:2, "g")), paste0("beta2", c(0:2, "g")),
paste0("mux", 1:2), paste0("phi", c("11", "12", "22")),
"mueta0", "mueta1", "mueta2", "mu_knot"
)
## Fit the model
BLS_LGCM.TIC_f <- getLGCM(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = TRUE, records = 1:9, growth_TIC = c("ex1", "ex2"), res_scale = 0.1,
paramOut = TRUE, names = paraBLS.TIC_LGCM.f
)
## Output point estimate and standard errors
printTable(BLS_LGCM.TIC_f)
# }
Run the code above in your browser using DataLab