mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# \donttest{
# Fit bilinear spline growth model with random knot (intrinsically nonlinear model)
BLS_LGCM_f <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = TRUE, records = 1:9, res_scale = 0.1)
# Fit bilinear spline growth model with fix knot (non-intrinsically nonlinear model)
BLS_LGCM_r <- getLGCM(dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "bilinear spline",
intrinsic = FALSE, records = 1:9, res_scale = 0.1)
# Likelihood ratio test
getLRT(full = BLS_LGCM_f@mxOutput, reduced = BLS_LGCM_r@mxOutput, boot = FALSE, rep = NA)
# }
Run the code above in your browser using DataLab