mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
# Load ECLS-K (2011) data
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- RMS_dat0$T1 - baseT
RMS_dat0$T2 <- RMS_dat0$T2 - baseT
RMS_dat0$T3 <- RMS_dat0$T3 - baseT
RMS_dat0$T4 <- RMS_dat0$T4 - baseT
RMS_dat0$T5 <- RMS_dat0$T5 - baseT
RMS_dat0$T6 <- RMS_dat0$T6 - baseT
RMS_dat0$T7 <- RMS_dat0$T7 - baseT
RMS_dat0$T8 <- RMS_dat0$T8 - baseT
RMS_dat0$T9 <- RMS_dat0$T9 - baseT
# \donttest{
# Fit linear multivariate latent growth curve model
LIN_PLGCM_f <- getMGM(
dat = RMS_dat0, t_var = c("T", "T"), y_var = c("R", "M"), curveFun = "LIN",
intrinsic = FALSE, records = list(1:9, 1:9), y_model = "LGCM", res_scale = c(0.1, 0.1),
res_cor = 0.3
)
# Fit bilinear spline multivariate latent growth curve model (random knots)
## Define parameter names
paraBLS_PLGCM.f <- c(
"Y_mueta0", "Y_mueta1", "Y_mueta2", "Y_knot",
paste0("Y_psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "Y_res",
"Z_mueta0", "Z_mueta1", "Z_mueta2", "Z_knot",
paste0("Z_psi", c("00", "01", "02", "0g", "11", "12", "1g", "22", "2g", "gg")), "Z_res",
paste0("YZ_psi", c(c("00", "10", "20", "g0", "01", "11", "21", "g1",
"02", "12", "22", "g2", "0g", "1g", "2g", "gg"))),"YZ_res"
)
## Fit model
BLS_PLGCM_f <- getMGM(
dat = RMS_dat0, t_var = c("T", "T"), y_var = c("R", "M"), curveFun = "BLS", intrinsic = TRUE,
records = list(1:9, 1:9), y_model = "LGCM", res_scale = c(0.1, 0.1), res_cor = 0.3,
paramOut = TRUE, names = paraBLS_PLGCM.f
)
printTable(BLS_PLGCM_f)
# }
Run the code above in your browser using DataLab