mxOption(model = NULL, key = "Default optimizer", "CSOLNP", reset = FALSE)
data("RMS_dat")
RMS_dat0 <- RMS_dat
# Re-baseline the data so that the estimated initial status is for the starting point of the study
baseT <- RMS_dat0$T1
RMS_dat0$T1 <- (RMS_dat0$T1 - baseT)/12
RMS_dat0$T2 <- (RMS_dat0$T2 - baseT)/12
RMS_dat0$T3 <- (RMS_dat0$T3 - baseT)/12
RMS_dat0$T4 <- (RMS_dat0$T4 - baseT)/12
RMS_dat0$T5 <- (RMS_dat0$T5 - baseT)/12
RMS_dat0$T6 <- (RMS_dat0$T6 - baseT)/12
RMS_dat0$T7 <- (RMS_dat0$T7 - baseT)/12
RMS_dat0$T8 <- (RMS_dat0$T8 - baseT)/12
RMS_dat0$T9 <- (RMS_dat0$T9 - baseT)/12
RMS_dat0$ex1 <- scale(RMS_dat0$Approach_to_Learning)
RMS_dat0$ex2 <- scale(RMS_dat0$Attention_focus)
# Standardize reading ability over time with its baseline value
BL_mean <- mean(RMS_dat0[, "R1"])
BL_var <- var(RMS_dat0[, "R1"])
RMS_dat0$Rs1 <- (RMS_dat0$R1 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs2 <- (RMS_dat0$R2 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs3 <- (RMS_dat0$R3 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs4 <- (RMS_dat0$R4 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs5 <- (RMS_dat0$R5 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs6 <- (RMS_dat0$R6 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs7 <- (RMS_dat0$R7 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs8 <- (RMS_dat0$R8 - BL_mean)/sqrt(BL_var)
RMS_dat0$Rs9 <- (RMS_dat0$R9 - BL_mean)/sqrt(BL_var)
# \donttest{
# Fit bilinear spline latent growth curve model (fixed knot) with a time-varying
# reading ability for mathematics development
BLS_TVC_LGCM1 <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "BLS", intrinsic = FALSE,
records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 0, growth_TIC = NULL,
res_scale = 0.1
)
# Fit negative exponential latent growth curve model (random ratio) with a
# decomposed time-varying reading ability and time-invariant covariates for
# mathematics development
paraEXP_LGCM3.f <- c(
"Y_alpha0", "Y_alpha1", "Y_alphag",
paste0("Y_psi", c("00", "01", "0g", "11", "1g", "gg")), "Y_residuals",
"X_mueta0", "X_mueta1", paste0("X_psi", c("00", "01", "11")),
paste0("X_rel_rate", 2:8), paste0("X_abs_rate", 1:8), "X_residuals",
paste0("betaTIC", c(0:1, "g")), paste0("betaTIC", c(0:1, "g")),
paste0("betaTVC", c(0:1, "g")),
"muTIC1", "muTIC2", "phiTIC11", "phiTIC12", "phiTIC22",
"Y_mueta0", "Y_mueta1", "Y_mu_slp_ratio",
"covBL1", "covBL2", "kappa", "Cov_XYres")
set.seed(20191029)
EXP_TVCslp_LGCM3.f <- getTVCmodel(
dat = RMS_dat0, t_var = "T", y_var = "M", curveFun = "EXP", intrinsic = TRUE,
records = 1:9, y_model = "LGCM", TVC = "Rs", decompose = 1,
growth_TIC = c("ex1", "ex2"), res_scale = c(0.1, 0.1),
res_cor = 0.3, tries = 10, paramOut = TRUE, names = paraEXP_LGCM3.f
)
printTable(EXP_TVCslp_LGCM3.f)
# }
Run the code above in your browser using DataLab