jaclev: Jacobian Leverage for nonlinear regression.
Description
Compute the Jacobian Leverage, generalized for nonlinear case.
Usage
jaclev(gradient, hessian, rsd)
Arguments
gradient
\(n \times p\) gradient of nonlinear function.
hessian
three simentional \(n \times p \times p\) of hessian of nonlinear regression function.
rsd
\(n \times 1\) residual vector.
Value
\(n \times n\) matrix of jacobian leverages.
Details
Jacobian leverage, generalized form of hat matrix for nonlinear regression.
References
Laurent. R. T. ST., and Cook. R. D. (1992). Leverage and Superleverage in Nonlinear Regression, Journal of the American Statistical Association 87(420): 985-990.