Learn R Programming

nlraa (version 0.98)

boot_nls: Bootstrapping for nonlinear models

Description

Bootstraping for nonlinear models

Usage

boot_nls(
  object,
  f = NULL,
  R = 999,
  psim = 2,
  resid.type = c("resample", "normal", "wild"),
  data = NULL,
  ...
)

Arguments

object

object of class nls

f

function to be applied (and bootstrapped), default coef

R

number of bootstrap samples, default 999

psim

simulation level for simulate_nls

resid.type

either “resample”, “normal” or “wild”.

data

optional data argument (useful/needed when data are not in an available environment).

...

additional arguments to be passed to function boot

Details

The residuals can either be generated by resampling with replacement (default or non-parametric), from a normal distribution (parameteric) or by changing their signs (wild). This last one is called “wild bootstrap”. There is more information in boot_lm.

See Also

Boot

Examples

Run this code
# NOT RUN {
require(car)
data(barley, package = "nlraa")
## Fit a linear-plateau
fit.nls <- nls(yield ~ SSlinp(NF, a, b, xs), data = barley)

## Bootstrap coefficients by default
## Keeping R small for simplicity, increase R for a more realistic use
fit.nls.bt <- boot_nls(fit.nls, R = 1e2)
## Compute confidence intervals
confint(fit.nls.bt, type = "perc")
## Visualize
hist(fit.nls.bt, 1, ci = "perc", main = "Intercept")
hist(fit.nls.bt, 2, ci = "perc", main = "linear term")
hist(fit.nls.bt, 3, ci = "perc", main = "xs break-point term")
# }
# NOT RUN {
# }

Run the code above in your browser using DataLab